This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a thin category, F is an inverse of G iff F is a section of G . Example 7.20(7) of Adamek p. 107. (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| thincinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| Assertion | thincinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | thincsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | thincsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 5 | thincsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 6 | thincinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 7 | 1 | thinccd | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 | 2 6 7 3 4 5 | isinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |
| 9 | 1 2 3 4 5 | thincsect2 | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |
| 10 | 9 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) → 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) |
| 11 | 8 10 | mpbiran3d | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) ) |