This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincmo.c | |- ( ph -> C e. ThinCat ) |
|
| thincmo.x | |- ( ph -> X e. B ) |
||
| thincmo.y | |- ( ph -> Y e. B ) |
||
| thincn0eu.b | |- ( ph -> B = ( Base ` C ) ) |
||
| thincn0eu.h | |- ( ph -> H = ( Hom ` C ) ) |
||
| Assertion | thincmod | |- ( ph -> E* f f e. ( X H Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincmo.x | |- ( ph -> X e. B ) |
|
| 3 | thincmo.y | |- ( ph -> Y e. B ) |
|
| 4 | thincn0eu.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 5 | thincn0eu.h | |- ( ph -> H = ( Hom ` C ) ) |
|
| 6 | 2 4 | eleqtrd | |- ( ph -> X e. ( Base ` C ) ) |
| 7 | 3 4 | eleqtrd | |- ( ph -> Y e. ( Base ` C ) ) |
| 8 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 9 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 10 | 1 6 7 8 9 | thincmo | |- ( ph -> E* f f e. ( X ( Hom ` C ) Y ) ) |
| 11 | 5 | oveqd | |- ( ph -> ( X H Y ) = ( X ( Hom ` C ) Y ) ) |
| 12 | 11 | eleq2d | |- ( ph -> ( f e. ( X H Y ) <-> f e. ( X ( Hom ` C ) Y ) ) ) |
| 13 | 12 | mobidv | |- ( ph -> ( E* f f e. ( X H Y ) <-> E* f f e. ( X ( Hom ` C ) Y ) ) ) |
| 14 | 10 13 | mpbird | |- ( ph -> E* f f e. ( X H Y ) ) |