This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thinchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| thinchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thinchom.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| thinchom.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thinchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| thinchom.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | ||
| Assertion | thinchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { 𝐹 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 2 | thinchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 3 | thinchom.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 4 | thinchom.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 5 | thinchom.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | thinchom.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 7 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 11 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ ThinCat ) |
| 12 | 7 8 9 10 4 5 11 | thincmo2 | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑔 = 𝐹 ) |
| 13 | 12 3 | eqsnd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { 𝐹 } ) |