This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isthincd2 and thincmo2 . (Contributed by Zhi Wang, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isthincd2lem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| isthincd2lem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isthincd2lem1.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| isthincd2lem1.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| isthincd2lem1.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) | ||
| Assertion | isthincd2lem1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isthincd2lem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 2 | isthincd2lem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 3 | isthincd2lem1.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 4 | isthincd2lem1.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 5 | isthincd2lem1.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) | |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑦 ) ) | |
| 7 | 6 | eleq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ) ) |
| 8 | 7 | mobidv | ⊢ ( 𝑥 = 𝑧 → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) | |
| 10 | 9 | eleq2d | ⊢ ( 𝑦 = 𝑤 → ( 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) ) |
| 11 | 10 | mobidv | ⊢ ( 𝑦 = 𝑤 → ( ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) ) |
| 12 | 8 11 | cbvral2vw | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) |
| 13 | 5 12 | sylib | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ) |
| 14 | oveq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑤 ) ) | |
| 15 | 14 | eleq2d | ⊢ ( 𝑧 = 𝑋 → ( 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ) ) |
| 16 | 15 | mobidv | ⊢ ( 𝑧 = 𝑋 → ( ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ) ) |
| 17 | nfv | ⊢ Ⅎ 𝑘 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) | |
| 18 | nfv | ⊢ Ⅎ 𝑓 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) | |
| 19 | eleq1w | ⊢ ( 𝑓 = 𝑘 → ( 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ) ) | |
| 20 | 17 18 19 | cbvmow | ⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ↔ ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ) |
| 21 | oveq2 | ⊢ ( 𝑤 = 𝑌 → ( 𝑋 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 22 | 21 | eleq2d | ⊢ ( 𝑤 = 𝑌 → ( 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 23 | 22 | mobidv | ⊢ ( 𝑤 = 𝑌 → ( ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑤 ) ↔ ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 24 | 20 23 | bitrid | ⊢ ( 𝑤 = 𝑌 → ( ∃* 𝑓 𝑓 ∈ ( 𝑋 𝐻 𝑤 ) ↔ ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 25 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑋 ) → 𝐵 = 𝐵 ) | |
| 26 | 16 24 1 25 2 | rspc2vd | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑧 𝐻 𝑤 ) → ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
| 27 | 13 26 | mpd | ⊢ ( 𝜑 → ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 28 | moel | ⊢ ( ∃* 𝑘 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ↔ ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑘 = 𝑙 ) | |
| 29 | 27 28 | sylib | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑘 = 𝑙 ) |
| 30 | eqeq1 | ⊢ ( 𝑘 = 𝐹 → ( 𝑘 = 𝑙 ↔ 𝐹 = 𝑙 ) ) | |
| 31 | eqeq2 | ⊢ ( 𝑙 = 𝐺 → ( 𝐹 = 𝑙 ↔ 𝐹 = 𝐺 ) ) | |
| 32 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐹 ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 33 | 30 31 3 32 4 | rspc2vd | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑋 𝐻 𝑌 ) ∀ 𝑙 ∈ ( 𝑋 𝐻 𝑌 ) 𝑘 = 𝑙 → 𝐹 = 𝐺 ) ) |
| 34 | 29 33 | mpd | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) |