This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Morphisms in the same hom-set are identical. (Contributed by Zhi
Wang, 17-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
isthincd2lem1.1 |
|
|
|
isthincd2lem1.2 |
|
|
|
isthincd2lem1.3 |
|
|
|
isthincd2lem1.4 |
|
|
|
thincmo2.b |
|
|
|
thincmo2.h |
|
|
|
thincmo2.c |
|
|
Assertion |
thincmo2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isthincd2lem1.1 |
|
| 2 |
|
isthincd2lem1.2 |
|
| 3 |
|
isthincd2lem1.3 |
|
| 4 |
|
isthincd2lem1.4 |
|
| 5 |
|
thincmo2.b |
|
| 6 |
|
thincmo2.h |
|
| 7 |
|
thincmo2.c |
|
| 8 |
5 6
|
isthinc |
|
| 9 |
8
|
simprbi |
|
| 10 |
7 9
|
syl |
|
| 11 |
1 2 3 4 10
|
isthincd2lem1 |
|