This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Thin categories
thincinv
Metamath Proof Explorer
Description: In a thin category, F is an inverse of G iff F is a
section of G . Example 7.20(7) of Adamek p. 107. (Contributed by Zhi Wang , 24-Sep-2024)
Ref
Expression
Hypotheses
thincsect.c
⊢ φ → C ∈ ThinCat
thincsect.b
⊢ B = Base C
thincsect.x
⊢ φ → X ∈ B
thincsect.y
⊢ φ → Y ∈ B
thincsect.s
⊢ S = Sect ⁡ C
thincinv.n
⊢ N = Inv ⁡ C
Assertion
thincinv
⊢ φ → F X N Y G ↔ F X S Y G
Proof
Step
Hyp
Ref
Expression
1
thincsect.c
⊢ φ → C ∈ ThinCat
2
thincsect.b
⊢ B = Base C
3
thincsect.x
⊢ φ → X ∈ B
4
thincsect.y
⊢ φ → Y ∈ B
5
thincsect.s
⊢ S = Sect ⁡ C
6
thincinv.n
⊢ N = Inv ⁡ C
7
1
thinccd
⊢ φ → C ∈ Cat
8
2 6 7 3 4 5
isinv
⊢ φ → F X N Y G ↔ F X S Y G ∧ G Y S X F
9
1 2 3 4 5
thincsect2
⊢ φ → F X S Y G ↔ G Y S X F
10
9
biimpa
⊢ φ ∧ F X S Y G → G Y S X F
11
8 10
mpbiran3d
⊢ φ → F X N Y G ↔ F X S Y G