This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce that a set is a singleton. (Contributed by Thierry Arnoux, 10-May-2023) (Proof shortened by SN, 3-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqsnd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = 𝐵 ) | |
| eqsnd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| Assertion | eqsnd | ⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsnd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = 𝐵 ) | |
| 2 | eqsnd.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) |
| 4 | 2 | ne0d | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 5 | eqsn | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ( 𝐴 = { 𝐵 } ↔ ∀ 𝑥 ∈ 𝐴 𝑥 = 𝐵 ) ) |
| 7 | 3 6 | mpbird | ⊢ ( 𝜑 → 𝐴 = { 𝐵 } ) |