This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thinchom.x | |- ( ph -> X e. B ) |
|
| thinchom.y | |- ( ph -> Y e. B ) |
||
| thinchom.f | |- ( ph -> F e. ( X H Y ) ) |
||
| thinchom.b | |- B = ( Base ` C ) |
||
| thinchom.h | |- H = ( Hom ` C ) |
||
| thinchom.c | |- ( ph -> C e. ThinCat ) |
||
| Assertion | thinchom | |- ( ph -> ( X H Y ) = { F } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinchom.x | |- ( ph -> X e. B ) |
|
| 2 | thinchom.y | |- ( ph -> Y e. B ) |
|
| 3 | thinchom.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 4 | thinchom.b | |- B = ( Base ` C ) |
|
| 5 | thinchom.h | |- H = ( Hom ` C ) |
|
| 6 | thinchom.c | |- ( ph -> C e. ThinCat ) |
|
| 7 | 1 | adantr | |- ( ( ph /\ g e. ( X H Y ) ) -> X e. B ) |
| 8 | 2 | adantr | |- ( ( ph /\ g e. ( X H Y ) ) -> Y e. B ) |
| 9 | simpr | |- ( ( ph /\ g e. ( X H Y ) ) -> g e. ( X H Y ) ) |
|
| 10 | 3 | adantr | |- ( ( ph /\ g e. ( X H Y ) ) -> F e. ( X H Y ) ) |
| 11 | 6 | adantr | |- ( ( ph /\ g e. ( X H Y ) ) -> C e. ThinCat ) |
| 12 | 7 8 9 10 4 5 11 | thincmo2 | |- ( ( ph /\ g e. ( X H Y ) ) -> g = F ) |
| 13 | 12 3 | eqsnd | |- ( ph -> ( X H Y ) = { F } ) |