This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Thin categories
thincciso3
Metamath Proof Explorer
Description: Categories isomorphic to a thin category are thin. Example 3.26(2)
of Adamek p. 33. Note that "thincciso2.u" is redundant thanks to
elbasfv . (Contributed by Zhi Wang , 18-Oct-2025)
Ref
Expression
Hypotheses
thincciso2.c
⊢ C = CatCat ⁡ U
thincciso2.b
⊢ B = Base C
thincciso2.u
⊢ φ → U ∈ V
thincciso2.x
⊢ φ → X ∈ B
thincciso2.y
⊢ φ → Y ∈ B
thincciso2.i
⊢ I = Iso ⁡ C
thincciso2.f
⊢ φ → F ∈ X I Y
thincciso3.xt
⊢ φ → X ∈ ThinCat
Assertion
thincciso3
⊢ φ → Y ∈ ThinCat
Proof
Step
Hyp
Ref
Expression
1
thincciso2.c
⊢ C = CatCat ⁡ U
2
thincciso2.b
⊢ B = Base C
3
thincciso2.u
⊢ φ → U ∈ V
4
thincciso2.x
⊢ φ → X ∈ B
5
thincciso2.y
⊢ φ → Y ∈ B
6
thincciso2.i
⊢ I = Iso ⁡ C
7
thincciso2.f
⊢ φ → F ∈ X I Y
8
thincciso3.xt
⊢ φ → X ∈ ThinCat
9
eqid
⊢ Inv ⁡ C = Inv ⁡ C
10
1
catccat
⊢ U ∈ V → C ∈ Cat
11
3 10
syl
⊢ φ → C ∈ Cat
12
2 9 11 4 5 6
invf
⊢ φ → X Inv ⁡ C Y : X I Y ⟶ Y I X
13
12 7
ffvelcdmd
⊢ φ → X Inv ⁡ C Y ⁡ F ∈ Y I X
14
1 2 3 5 4 6 13 8
thincciso2
⊢ φ → Y ∈ ThinCat