This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgiun | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ ( topGen ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiun3g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 3 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 4 | 3 | rnmptss | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ 𝐵 ) |
| 5 | eltg3i | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ 𝐵 ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ( topGen ‘ 𝐵 ) ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ∪ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ( topGen ‘ 𝐵 ) ) |
| 7 | 2 6 | eqeltrd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ ( topGen ‘ 𝐵 ) ) |