This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed form of tfis . (Contributed by Scott Fenton, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tfisg | ⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → ∀ 𝑥 ∈ On 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝜑 } ⊆ On | |
| 2 | dfss3 | ⊢ ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } ↔ ∀ 𝑦 ∈ 𝑧 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 On | |
| 4 | 3 | elrabsf | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( 𝑦 ∈ On ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 5 | 4 | simprbi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } → [ 𝑦 / 𝑥 ] 𝜑 ) |
| 6 | 5 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝑧 𝑦 ∈ { 𝑥 ∈ On ∣ 𝜑 } → ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 7 | 2 6 | sylbi | ⊢ ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 8 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 9 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 10 | 8 9 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 |
| 11 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 12 | 10 11 | nfim | ⊢ Ⅎ 𝑥 ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 13 | raleq | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 14 | sbceq1a | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 15 | 13 14 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ↔ ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
| 16 | 12 15 | rspc | ⊢ ( 𝑧 ∈ On → ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
| 17 | 16 | impcom | ⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → ( ∀ 𝑦 ∈ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 18 | 7 17 | syl5 | ⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 19 | simpr | ⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → 𝑧 ∈ On ) | |
| 20 | 18 19 | jctild | ⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → ( 𝑧 ∈ On ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
| 21 | 3 | elrabsf | ⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ↔ ( 𝑧 ∈ On ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 22 | 20 21 | imbitrrdi | ⊢ ( ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) ∧ 𝑧 ∈ On ) → ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) |
| 23 | 22 | ralrimiva | ⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → ∀ 𝑧 ∈ On ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) |
| 24 | tfi | ⊢ ( ( { 𝑥 ∈ On ∣ 𝜑 } ⊆ On ∧ ∀ 𝑧 ∈ On ( 𝑧 ⊆ { 𝑥 ∈ On ∣ 𝜑 } → 𝑧 ∈ { 𝑥 ∈ On ∣ 𝜑 } ) ) → { 𝑥 ∈ On ∣ 𝜑 } = On ) | |
| 25 | 1 23 24 | sylancr | ⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → { 𝑥 ∈ On ∣ 𝜑 } = On ) |
| 26 | 25 | eqcomd | ⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → On = { 𝑥 ∈ On ∣ 𝜑 } ) |
| 27 | rabid2 | ⊢ ( On = { 𝑥 ∈ On ∣ 𝜑 } ↔ ∀ 𝑥 ∈ On 𝜑 ) | |
| 28 | 26 27 | sylib | ⊢ ( ∀ 𝑥 ∈ On ( ∀ 𝑦 ∈ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 → 𝜑 ) → ∀ 𝑥 ∈ On 𝜑 ) |