This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| termcpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| termcpropd.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| termcpropd.4 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| Assertion | termcpropd | ⊢ ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 2 | termcpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 3 | termcpropd.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 4 | termcpropd.4 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 5 | 1 2 3 4 | thincpropd | ⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat ) ) |
| 6 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 7 | 6 | eqeq1d | ⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) = { 𝑥 } ↔ ( Base ‘ 𝐷 ) = { 𝑥 } ) ) |
| 8 | 7 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐷 ) = { 𝑥 } ) ) |
| 9 | 5 8 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ↔ ( 𝐷 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐷 ) = { 𝑥 } ) ) ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 11 | 10 | istermc | ⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 13 | 12 | istermc | ⊢ ( 𝐷 ∈ TermCat ↔ ( 𝐷 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐷 ) = { 𝑥 } ) ) |
| 14 | 9 11 13 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat ) ) |