This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| termcpropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
||
| termcpropd.3 | |- ( ph -> C e. V ) |
||
| termcpropd.4 | |- ( ph -> D e. W ) |
||
| Assertion | termcpropd | |- ( ph -> ( C e. TermCat <-> D e. TermCat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcpropd.1 | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
|
| 2 | termcpropd.2 | |- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
|
| 3 | termcpropd.3 | |- ( ph -> C e. V ) |
|
| 4 | termcpropd.4 | |- ( ph -> D e. W ) |
|
| 5 | 1 2 3 4 | thincpropd | |- ( ph -> ( C e. ThinCat <-> D e. ThinCat ) ) |
| 6 | 1 | homfeqbas | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 7 | 6 | eqeq1d | |- ( ph -> ( ( Base ` C ) = { x } <-> ( Base ` D ) = { x } ) ) |
| 8 | 7 | exbidv | |- ( ph -> ( E. x ( Base ` C ) = { x } <-> E. x ( Base ` D ) = { x } ) ) |
| 9 | 5 8 | anbi12d | |- ( ph -> ( ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) <-> ( D e. ThinCat /\ E. x ( Base ` D ) = { x } ) ) ) |
| 10 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 11 | 10 | istermc | |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) ) |
| 12 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 13 | 12 | istermc | |- ( D e. TermCat <-> ( D e. ThinCat /\ E. x ( Base ` D ) = { x } ) ) |
| 14 | 9 11 13 | 3bitr4g | |- ( ph -> ( C e. TermCat <-> D e. TermCat ) ) |