This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termchom.c | |- ( ph -> C e. TermCat ) |
|
| termchom.b | |- B = ( Base ` C ) |
||
| termchom.x | |- ( ph -> X e. B ) |
||
| termchom.y | |- ( ph -> Y e. B ) |
||
| termchom.h | |- H = ( Hom ` C ) |
||
| termchom.i | |- .1. = ( Id ` C ) |
||
| Assertion | termchom | |- ( ph -> ( X H Y ) = { ( .1. ` X ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termchom.c | |- ( ph -> C e. TermCat ) |
|
| 2 | termchom.b | |- B = ( Base ` C ) |
|
| 3 | termchom.x | |- ( ph -> X e. B ) |
|
| 4 | termchom.y | |- ( ph -> Y e. B ) |
|
| 5 | termchom.h | |- H = ( Hom ` C ) |
|
| 6 | termchom.i | |- .1. = ( Id ` C ) |
|
| 7 | 1 2 3 4 5 | termchomn0 | |- ( ph -> -. ( X H Y ) = (/) ) |
| 8 | neq0 | |- ( -. ( X H Y ) = (/) <-> E. f f e. ( X H Y ) ) |
|
| 9 | 7 8 | sylib | |- ( ph -> E. f f e. ( X H Y ) ) |
| 10 | 3 | adantr | |- ( ( ph /\ f e. ( X H Y ) ) -> X e. B ) |
| 11 | 4 | adantr | |- ( ( ph /\ f e. ( X H Y ) ) -> Y e. B ) |
| 12 | simpr | |- ( ( ph /\ f e. ( X H Y ) ) -> f e. ( X H Y ) ) |
|
| 13 | 1 | adantr | |- ( ( ph /\ f e. ( X H Y ) ) -> C e. TermCat ) |
| 14 | 13 | termcthind | |- ( ( ph /\ f e. ( X H Y ) ) -> C e. ThinCat ) |
| 15 | 10 11 12 2 5 14 | thinchom | |- ( ( ph /\ f e. ( X H Y ) ) -> ( X H Y ) = { f } ) |
| 16 | 13 2 10 11 5 12 6 | termcid | |- ( ( ph /\ f e. ( X H Y ) ) -> f = ( .1. ` X ) ) |
| 17 | 16 | sneqd | |- ( ( ph /\ f e. ( X H Y ) ) -> { f } = { ( .1. ` X ) } ) |
| 18 | 15 17 | eqtrd | |- ( ( ph /\ f e. ( X H Y ) ) -> ( X H Y ) = { ( .1. ` X ) } ) |
| 19 | 9 18 | exlimddv | |- ( ph -> ( X H Y ) = { ( .1. ` X ) } ) |