This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termchom.c | No typesetting found for |- ( ph -> C e. TermCat ) with typecode |- | |
| termchom.b | |||
| termchom.x | |||
| termchom.y | |||
| termchom.h | |||
| termchom.i | |||
| Assertion | termchom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termchom.c | Could not format ( ph -> C e. TermCat ) : No typesetting found for |- ( ph -> C e. TermCat ) with typecode |- | |
| 2 | termchom.b | ||
| 3 | termchom.x | ||
| 4 | termchom.y | ||
| 5 | termchom.h | ||
| 6 | termchom.i | ||
| 7 | 1 2 3 4 5 | termchomn0 | |
| 8 | neq0 | ||
| 9 | 7 8 | sylib | |
| 10 | 3 | adantr | |
| 11 | 4 | adantr | |
| 12 | simpr | ||
| 13 | 1 | adantr | Could not format ( ( ph /\ f e. ( X H Y ) ) -> C e. TermCat ) : No typesetting found for |- ( ( ph /\ f e. ( X H Y ) ) -> C e. TermCat ) with typecode |- |
| 14 | 13 | termcthind | |
| 15 | 10 11 12 2 5 14 | thinchom | |
| 16 | 13 2 10 11 5 12 6 | termcid | |
| 17 | 16 | sneqd | |
| 18 | 15 17 | eqtrd | |
| 19 | 9 18 | exlimddv |