This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum . (Contributed by AV, 23-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telgsumfz0.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| telgsumfz0.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| telgsumfz0.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| telgsumfz0.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | ||
| telgsumfz0.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐴 ∈ 𝐾 ) | ||
| telgsumfz0.a | ⊢ ( 𝑘 = 𝑖 → 𝐴 = 𝐵 ) | ||
| telgsumfz0.c | ⊢ ( 𝑘 = ( 𝑖 + 1 ) → 𝐴 = 𝐶 ) | ||
| telgsumfz0.d | ⊢ ( 𝑘 = 0 → 𝐴 = 𝐷 ) | ||
| telgsumfz0.e | ⊢ ( 𝑘 = ( 𝑆 + 1 ) → 𝐴 = 𝐸 ) | ||
| Assertion | telgsumfz0 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐵 − 𝐶 ) ) ) = ( 𝐷 − 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsumfz0.k | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
| 2 | telgsumfz0.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 3 | telgsumfz0.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | telgsumfz0.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | |
| 5 | telgsumfz0.f | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( 𝑆 + 1 ) ) 𝐴 ∈ 𝐾 ) | |
| 6 | telgsumfz0.a | ⊢ ( 𝑘 = 𝑖 → 𝐴 = 𝐵 ) | |
| 7 | telgsumfz0.c | ⊢ ( 𝑘 = ( 𝑖 + 1 ) → 𝐴 = 𝐶 ) | |
| 8 | telgsumfz0.d | ⊢ ( 𝑘 = 0 → 𝐴 = 𝐷 ) | |
| 9 | telgsumfz0.e | ⊢ ( 𝑘 = ( 𝑆 + 1 ) → 𝐴 = 𝐸 ) | |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → 𝑖 ∈ ( 0 ... 𝑆 ) ) | |
| 11 | 6 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) ∧ 𝑘 = 𝑖 ) → 𝐴 = 𝐵 ) |
| 12 | 10 11 | csbied | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐴 = 𝐵 ) |
| 13 | 12 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐴 ) |
| 14 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → ( 𝑖 + 1 ) ∈ V ) | |
| 15 | 7 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) ∧ 𝑘 = ( 𝑖 + 1 ) ) → 𝐴 = 𝐶 ) |
| 16 | 14 15 | csbied | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 = 𝐶 ) |
| 17 | 16 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → 𝐶 = ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) |
| 18 | 13 17 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑆 ) ) → ( 𝐵 − 𝐶 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 19 | 18 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐵 − 𝐶 ) ) = ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐵 − 𝐶 ) ) ) = ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 21 | 1 2 3 4 5 | telgsumfz0s | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( ⦋ 𝑖 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑘 ⦌ 𝐴 ) ) ) = ( ⦋ 0 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
| 22 | c0ex | ⊢ 0 ∈ V | |
| 23 | 22 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 24 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → 𝐴 = 𝐷 ) |
| 25 | 23 24 | csbied | ⊢ ( 𝜑 → ⦋ 0 / 𝑘 ⦌ 𝐴 = 𝐷 ) |
| 26 | ovexd | ⊢ ( 𝜑 → ( 𝑆 + 1 ) ∈ V ) | |
| 27 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 = ( 𝑆 + 1 ) ) → 𝐴 = 𝐸 ) |
| 28 | 26 27 | csbied | ⊢ ( 𝜑 → ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐴 = 𝐸 ) |
| 29 | 25 28 | oveq12d | ⊢ ( 𝜑 → ( ⦋ 0 / 𝑘 ⦌ 𝐴 − ⦋ ( 𝑆 + 1 ) / 𝑘 ⦌ 𝐴 ) = ( 𝐷 − 𝐸 ) ) |
| 30 | 20 21 29 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐵 − 𝐶 ) ) ) = ( 𝐷 − 𝐸 ) ) |