This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Telescoping finite group sum ranging over nonnegative integers, using implicit substitution, analogous to telfsum . (Contributed by AV, 23-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telgsumfz0.k | |- K = ( Base ` G ) |
|
| telgsumfz0.g | |- ( ph -> G e. Abel ) |
||
| telgsumfz0.m | |- .- = ( -g ` G ) |
||
| telgsumfz0.s | |- ( ph -> S e. NN0 ) |
||
| telgsumfz0.f | |- ( ph -> A. k e. ( 0 ... ( S + 1 ) ) A e. K ) |
||
| telgsumfz0.a | |- ( k = i -> A = B ) |
||
| telgsumfz0.c | |- ( k = ( i + 1 ) -> A = C ) |
||
| telgsumfz0.d | |- ( k = 0 -> A = D ) |
||
| telgsumfz0.e | |- ( k = ( S + 1 ) -> A = E ) |
||
| Assertion | telgsumfz0 | |- ( ph -> ( G gsum ( i e. ( 0 ... S ) |-> ( B .- C ) ) ) = ( D .- E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telgsumfz0.k | |- K = ( Base ` G ) |
|
| 2 | telgsumfz0.g | |- ( ph -> G e. Abel ) |
|
| 3 | telgsumfz0.m | |- .- = ( -g ` G ) |
|
| 4 | telgsumfz0.s | |- ( ph -> S e. NN0 ) |
|
| 5 | telgsumfz0.f | |- ( ph -> A. k e. ( 0 ... ( S + 1 ) ) A e. K ) |
|
| 6 | telgsumfz0.a | |- ( k = i -> A = B ) |
|
| 7 | telgsumfz0.c | |- ( k = ( i + 1 ) -> A = C ) |
|
| 8 | telgsumfz0.d | |- ( k = 0 -> A = D ) |
|
| 9 | telgsumfz0.e | |- ( k = ( S + 1 ) -> A = E ) |
|
| 10 | simpr | |- ( ( ph /\ i e. ( 0 ... S ) ) -> i e. ( 0 ... S ) ) |
|
| 11 | 6 | adantl | |- ( ( ( ph /\ i e. ( 0 ... S ) ) /\ k = i ) -> A = B ) |
| 12 | 10 11 | csbied | |- ( ( ph /\ i e. ( 0 ... S ) ) -> [_ i / k ]_ A = B ) |
| 13 | 12 | eqcomd | |- ( ( ph /\ i e. ( 0 ... S ) ) -> B = [_ i / k ]_ A ) |
| 14 | ovexd | |- ( ( ph /\ i e. ( 0 ... S ) ) -> ( i + 1 ) e. _V ) |
|
| 15 | 7 | adantl | |- ( ( ( ph /\ i e. ( 0 ... S ) ) /\ k = ( i + 1 ) ) -> A = C ) |
| 16 | 14 15 | csbied | |- ( ( ph /\ i e. ( 0 ... S ) ) -> [_ ( i + 1 ) / k ]_ A = C ) |
| 17 | 16 | eqcomd | |- ( ( ph /\ i e. ( 0 ... S ) ) -> C = [_ ( i + 1 ) / k ]_ A ) |
| 18 | 13 17 | oveq12d | |- ( ( ph /\ i e. ( 0 ... S ) ) -> ( B .- C ) = ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) |
| 19 | 18 | mpteq2dva | |- ( ph -> ( i e. ( 0 ... S ) |-> ( B .- C ) ) = ( i e. ( 0 ... S ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) |
| 20 | 19 | oveq2d | |- ( ph -> ( G gsum ( i e. ( 0 ... S ) |-> ( B .- C ) ) ) = ( G gsum ( i e. ( 0 ... S ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) ) |
| 21 | 1 2 3 4 5 | telgsumfz0s | |- ( ph -> ( G gsum ( i e. ( 0 ... S ) |-> ( [_ i / k ]_ A .- [_ ( i + 1 ) / k ]_ A ) ) ) = ( [_ 0 / k ]_ A .- [_ ( S + 1 ) / k ]_ A ) ) |
| 22 | c0ex | |- 0 e. _V |
|
| 23 | 22 | a1i | |- ( ph -> 0 e. _V ) |
| 24 | 8 | adantl | |- ( ( ph /\ k = 0 ) -> A = D ) |
| 25 | 23 24 | csbied | |- ( ph -> [_ 0 / k ]_ A = D ) |
| 26 | ovexd | |- ( ph -> ( S + 1 ) e. _V ) |
|
| 27 | 9 | adantl | |- ( ( ph /\ k = ( S + 1 ) ) -> A = E ) |
| 28 | 26 27 | csbied | |- ( ph -> [_ ( S + 1 ) / k ]_ A = E ) |
| 29 | 25 28 | oveq12d | |- ( ph -> ( [_ 0 / k ]_ A .- [_ ( S + 1 ) / k ]_ A ) = ( D .- E ) ) |
| 30 | 20 21 29 | 3eqtrd | |- ( ph -> ( G gsum ( i e. ( 0 ... S ) |-> ( B .- C ) ) ) = ( D .- E ) ) |