This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of tan4thpi as of 2-Sep-2025. (Contributed by Mario Carneiro, 5-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tan4thpiOLD | ⊢ ( tan ‘ ( π / 4 ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pire | ⊢ π ∈ ℝ | |
| 2 | 4nn | ⊢ 4 ∈ ℕ | |
| 3 | nndivre | ⊢ ( ( π ∈ ℝ ∧ 4 ∈ ℕ ) → ( π / 4 ) ∈ ℝ ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( π / 4 ) ∈ ℝ |
| 5 | 4 | recni | ⊢ ( π / 4 ) ∈ ℂ |
| 6 | sincos4thpi | ⊢ ( ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ∧ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ) | |
| 7 | 6 | simpri | ⊢ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
| 8 | sqrt2re | ⊢ ( √ ‘ 2 ) ∈ ℝ | |
| 9 | 8 | recni | ⊢ ( √ ‘ 2 ) ∈ ℂ |
| 10 | 2re | ⊢ 2 ∈ ℝ | |
| 11 | 0le2 | ⊢ 0 ≤ 2 | |
| 12 | resqrtth | ⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( ( √ ‘ 2 ) ↑ 2 ) = 2 ) | |
| 13 | 10 11 12 | mp2an | ⊢ ( ( √ ‘ 2 ) ↑ 2 ) = 2 |
| 14 | 2ne0 | ⊢ 2 ≠ 0 | |
| 15 | 13 14 | eqnetri | ⊢ ( ( √ ‘ 2 ) ↑ 2 ) ≠ 0 |
| 16 | sqne0 | ⊢ ( ( √ ‘ 2 ) ∈ ℂ → ( ( ( √ ‘ 2 ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ 2 ) ≠ 0 ) ) | |
| 17 | 9 16 | ax-mp | ⊢ ( ( ( √ ‘ 2 ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ 2 ) ≠ 0 ) |
| 18 | 15 17 | mpbi | ⊢ ( √ ‘ 2 ) ≠ 0 |
| 19 | recne0 | ⊢ ( ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) → ( 1 / ( √ ‘ 2 ) ) ≠ 0 ) | |
| 20 | 9 18 19 | mp2an | ⊢ ( 1 / ( √ ‘ 2 ) ) ≠ 0 |
| 21 | 7 20 | eqnetri | ⊢ ( cos ‘ ( π / 4 ) ) ≠ 0 |
| 22 | tanval | ⊢ ( ( ( π / 4 ) ∈ ℂ ∧ ( cos ‘ ( π / 4 ) ) ≠ 0 ) → ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) ) | |
| 23 | 5 21 22 | mp2an | ⊢ ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) |
| 24 | 6 | simpli | ⊢ ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
| 25 | 24 7 | oveq12i | ⊢ ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) = ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) ) |
| 26 | 9 18 | reccli | ⊢ ( 1 / ( √ ‘ 2 ) ) ∈ ℂ |
| 27 | 26 20 | dividi | ⊢ ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) ) = 1 |
| 28 | 23 25 27 | 3eqtri | ⊢ ( tan ‘ ( π / 4 ) ) = 1 |