This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A connected T_1 space is perfect, unless it is the topology of a singleton. (Contributed by Mario Carneiro, 26-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t1connperf.1 | |- X = U. J |
|
| Assertion | t1connperf | |- ( ( J e. Fre /\ J e. Conn /\ -. X ~~ 1o ) -> J e. Perf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1connperf.1 | |- X = U. J |
|
| 2 | simplr | |- ( ( ( J e. Fre /\ J e. Conn ) /\ ( x e. X /\ { x } e. J ) ) -> J e. Conn ) |
|
| 3 | simprr | |- ( ( ( J e. Fre /\ J e. Conn ) /\ ( x e. X /\ { x } e. J ) ) -> { x } e. J ) |
|
| 4 | vex | |- x e. _V |
|
| 5 | 4 | snnz | |- { x } =/= (/) |
| 6 | 5 | a1i | |- ( ( ( J e. Fre /\ J e. Conn ) /\ ( x e. X /\ { x } e. J ) ) -> { x } =/= (/) ) |
| 7 | 1 | t1sncld | |- ( ( J e. Fre /\ x e. X ) -> { x } e. ( Clsd ` J ) ) |
| 8 | 7 | ad2ant2r | |- ( ( ( J e. Fre /\ J e. Conn ) /\ ( x e. X /\ { x } e. J ) ) -> { x } e. ( Clsd ` J ) ) |
| 9 | 1 2 3 6 8 | connclo | |- ( ( ( J e. Fre /\ J e. Conn ) /\ ( x e. X /\ { x } e. J ) ) -> { x } = X ) |
| 10 | 4 | ensn1 | |- { x } ~~ 1o |
| 11 | 9 10 | eqbrtrrdi | |- ( ( ( J e. Fre /\ J e. Conn ) /\ ( x e. X /\ { x } e. J ) ) -> X ~~ 1o ) |
| 12 | 11 | rexlimdvaa | |- ( ( J e. Fre /\ J e. Conn ) -> ( E. x e. X { x } e. J -> X ~~ 1o ) ) |
| 13 | 12 | con3d | |- ( ( J e. Fre /\ J e. Conn ) -> ( -. X ~~ 1o -> -. E. x e. X { x } e. J ) ) |
| 14 | ralnex | |- ( A. x e. X -. { x } e. J <-> -. E. x e. X { x } e. J ) |
|
| 15 | 13 14 | imbitrrdi | |- ( ( J e. Fre /\ J e. Conn ) -> ( -. X ~~ 1o -> A. x e. X -. { x } e. J ) ) |
| 16 | t1top | |- ( J e. Fre -> J e. Top ) |
|
| 17 | 16 | adantr | |- ( ( J e. Fre /\ J e. Conn ) -> J e. Top ) |
| 18 | 1 | isperf3 | |- ( J e. Perf <-> ( J e. Top /\ A. x e. X -. { x } e. J ) ) |
| 19 | 18 | baib | |- ( J e. Top -> ( J e. Perf <-> A. x e. X -. { x } e. J ) ) |
| 20 | 17 19 | syl | |- ( ( J e. Fre /\ J e. Conn ) -> ( J e. Perf <-> A. x e. X -. { x } e. J ) ) |
| 21 | 15 20 | sylibrd | |- ( ( J e. Fre /\ J e. Conn ) -> ( -. X ~~ 1o -> J e. Perf ) ) |
| 22 | 21 | 3impia | |- ( ( J e. Fre /\ J e. Conn /\ -. X ~~ 1o ) -> J e. Perf ) |