This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 . (Contributed by Peter Mazsa, 23-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symrefref3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symrefref2 | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ) | |
| 2 | cnvsym | ⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) | |
| 3 | idinxpss | ⊢ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ) | |
| 4 | idrefALT | ⊢ ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) | |
| 5 | 3 4 | bibi12i | ⊢ ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ↔ ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) ) |
| 6 | 1 2 5 | 3imtr3i | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ ran 𝑅 ( 𝑥 = 𝑦 → 𝑥 𝑅 𝑦 ) ↔ ∀ 𝑥 ∈ dom 𝑅 𝑥 𝑅 𝑥 ) ) |