This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symmetry is a sufficient condition for the equivalence of two versions of the reflexive relation, see also symrefref2 . (Contributed by Peter Mazsa, 23-Aug-2021) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symrefref3 | |- ( A. x A. y ( x R y -> y R x ) -> ( A. x e. dom R A. y e. ran R ( x = y -> x R y ) <-> A. x e. dom R x R x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symrefref2 | |- ( `' R C_ R -> ( ( _I i^i ( dom R X. ran R ) ) C_ R <-> ( _I |` dom R ) C_ R ) ) |
|
| 2 | cnvsym | |- ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) ) |
|
| 3 | idinxpss | |- ( ( _I i^i ( dom R X. ran R ) ) C_ R <-> A. x e. dom R A. y e. ran R ( x = y -> x R y ) ) |
|
| 4 | idrefALT | |- ( ( _I |` dom R ) C_ R <-> A. x e. dom R x R x ) |
|
| 5 | 3 4 | bibi12i | |- ( ( ( _I i^i ( dom R X. ran R ) ) C_ R <-> ( _I |` dom R ) C_ R ) <-> ( A. x e. dom R A. y e. ran R ( x = y -> x R y ) <-> A. x e. dom R x R x ) ) |
| 6 | 1 2 5 | 3imtr3i | |- ( A. x A. y ( x R y -> y R x ) -> ( A. x e. dom R A. y e. ran R ( x = y -> x R y ) <-> A. x e. dom R x R x ) ) |