This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group operation of the symmetric group on A is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by Mario Carneiro, 28-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgov.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symgov.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| symgov.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | symgcl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgov.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symgov.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | symgov.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 1 2 3 | symgov | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘ 𝑌 ) ) |
| 5 | 1 2 | symgbasf1o | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 : 𝐴 –1-1-onto→ 𝐴 ) |
| 6 | 1 2 | symgbasf1o | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 : 𝐴 –1-1-onto→ 𝐴 ) |
| 7 | f1oco | ⊢ ( ( 𝑋 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑌 : 𝐴 –1-1-onto→ 𝐴 ) → ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) |
| 9 | coexg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∘ 𝑌 ) ∈ V ) | |
| 10 | 1 2 | elsymgbas2 | ⊢ ( ( 𝑋 ∘ 𝑌 ) ∈ V → ( ( 𝑋 ∘ 𝑌 ) ∈ 𝐵 ↔ ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∘ 𝑌 ) ∈ 𝐵 ↔ ( 𝑋 ∘ 𝑌 ) : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 12 | 8 11 | mpbird | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∘ 𝑌 ) ∈ 𝐵 ) |
| 13 | 4 12 | eqeltrd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |