This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for symgfixfo . (Contributed by AV, 7-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
||
| symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
||
| symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
||
| symgfixfo.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
||
| Assertion | symgfixfolem1 | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> E e. Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
|
| 3 | symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 4 | symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
|
| 5 | symgfixfo.e | |- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
|
| 6 | 3 5 | symgextf1o | |- ( ( K e. N /\ Z e. S ) -> E : N -1-1-onto-> N ) |
| 7 | 6 | 3adant1 | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> E : N -1-1-onto-> N ) |
| 8 | iftrue | |- ( x = K -> if ( x = K , K , ( Z ` x ) ) = K ) |
|
| 9 | simp2 | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> K e. N ) |
|
| 10 | 5 8 9 9 | fvmptd3 | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> ( E ` K ) = K ) |
| 11 | mptexg | |- ( N e. V -> ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) e. _V ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) e. _V ) |
| 13 | 5 12 | eqeltrid | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> E e. _V ) |
| 14 | 1 2 | symgfixelq | |- ( E e. _V -> ( E e. Q <-> ( E : N -1-1-onto-> N /\ ( E ` K ) = K ) ) ) |
| 15 | 13 14 | syl | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> ( E e. Q <-> ( E : N -1-1-onto-> N /\ ( E ` K ) = K ) ) ) |
| 16 | 7 10 15 | mpbir2and | |- ( ( N e. V /\ K e. N /\ Z e. S ) -> E e. Q ) |