This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a (proper) pair has cardinality 2 . (Contributed by AV, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symg1bas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symg1bas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| symg2bas.0 | ⊢ 𝐴 = { 𝐼 , 𝐽 } | ||
| Assertion | symg2hash | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ♯ ‘ 𝐵 ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symg1bas.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symg1bas.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | symg2bas.0 | ⊢ 𝐴 = { 𝐼 , 𝐽 } | |
| 4 | prfi | ⊢ { 𝐼 , 𝐽 } ∈ Fin | |
| 5 | 3 4 | eqeltri | ⊢ 𝐴 ∈ Fin |
| 6 | 1 2 | symghash | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 7 | 5 6 | ax-mp | ⊢ ( ♯ ‘ 𝐵 ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) |
| 8 | 3 | fveq2i | ⊢ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ { 𝐼 , 𝐽 } ) |
| 9 | elex | ⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ V ) | |
| 10 | elex | ⊢ ( 𝐽 ∈ 𝑊 → 𝐽 ∈ V ) | |
| 11 | id | ⊢ ( 𝐼 ≠ 𝐽 → 𝐼 ≠ 𝐽 ) | |
| 12 | 9 10 11 | 3anim123i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( 𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼 ≠ 𝐽 ) ) |
| 13 | hashprb | ⊢ ( ( 𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼 ≠ 𝐽 ) ↔ ( ♯ ‘ { 𝐼 , 𝐽 } ) = 2 ) | |
| 14 | 12 13 | sylib | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ♯ ‘ { 𝐼 , 𝐽 } ) = 2 ) |
| 15 | 8 14 | eqtrid | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ♯ ‘ 𝐴 ) = 2 ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ! ‘ ( ♯ ‘ 𝐴 ) ) = ( ! ‘ 2 ) ) |
| 17 | fac2 | ⊢ ( ! ‘ 2 ) = 2 | |
| 18 | 16 17 | eqtrdi | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ! ‘ ( ♯ ‘ 𝐴 ) ) = 2 ) |
| 19 | 7 18 | eqtrid | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽 ) → ( ♯ ‘ 𝐵 ) = 2 ) |