This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subword extractor outside its intended domain. (Contributed by Alexander van der Vekens, 24-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdnd2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 𝐴 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orass | ⊢ ( ( 𝐵 ≤ 𝐴 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ↔ ( 𝐵 ≤ 𝐴 ∨ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ) | |
| 2 | pm2.24 | ⊢ ( 𝐵 ≤ 𝐴 → ( ¬ 𝐵 ≤ 𝐴 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) ) | |
| 3 | swrdval | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = if ( ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 , ( 𝑥 ∈ ( 0 ..^ ( 𝐵 − 𝐴 ) ) ↦ ( 𝑊 ‘ ( 𝑥 + 𝐴 ) ) ) , ∅ ) ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = if ( ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 , ( 𝑥 ∈ ( 0 ..^ ( 𝐵 − 𝐴 ) ) ↦ ( 𝑊 ‘ ( 𝑥 + 𝐴 ) ) ) , ∅ ) ) |
| 5 | wrddm | ⊢ ( 𝑊 ∈ Word 𝑉 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 6 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 7 | 3anass | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) | |
| 8 | ssfzoulel | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐵 ≤ 𝐴 ) ) ) | |
| 9 | 8 | imp | ⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐵 ≤ 𝐴 ) ) |
| 10 | 7 9 | sylanbr | ⊢ ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐵 ≤ 𝐴 ) ) |
| 11 | 10 | con3dimp | ⊢ ( ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 12 | sseq2 | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ↔ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 13 | 12 | notbid | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ↔ ¬ ( 𝐴 ..^ 𝐵 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 14 | 11 13 | imbitrrid | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) ) |
| 15 | 14 | exp5j | ⊢ ( dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) ) ) ) ) |
| 16 | 5 6 15 | sylc | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) ) ) ) |
| 17 | 16 | 3impib | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ¬ 𝐵 ≤ 𝐴 → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) ) ) |
| 18 | 17 | imp31 | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ¬ ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 ) |
| 19 | 18 | iffalsed | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → if ( ( 𝐴 ..^ 𝐵 ) ⊆ dom 𝑊 , ( 𝑥 ∈ ( 0 ..^ ( 𝐵 − 𝐴 ) ) ↦ ( 𝑊 ‘ ( 𝑥 + 𝐴 ) ) ) , ∅ ) = ∅ ) |
| 20 | 4 19 | eqtrd | ⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) |
| 21 | 20 | ex | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ¬ 𝐵 ≤ 𝐴 → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 22 | 21 | expcom | ⊢ ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ¬ 𝐵 ≤ 𝐴 → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) ) |
| 23 | 22 | com23 | ⊢ ( ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ¬ 𝐵 ≤ 𝐴 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) ) |
| 24 | 2 23 | jaoi | ⊢ ( ( 𝐵 ≤ 𝐴 ∨ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ¬ 𝐵 ≤ 𝐴 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) ) |
| 25 | swrdlend | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) | |
| 26 | 25 | com12 | ⊢ ( 𝐵 ≤ 𝐴 → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 27 | 24 26 | pm2.61d2 | ⊢ ( ( 𝐵 ≤ 𝐴 ∨ ( ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 28 | 1 27 | sylbi | ⊢ ( ( 𝐵 ≤ 𝐴 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |
| 29 | 28 | com12 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 𝐴 ∨ ( ♯ ‘ 𝑊 ) ≤ 𝐴 ∨ 𝐵 ≤ 0 ) → ( 𝑊 substr 〈 𝐴 , 𝐵 〉 ) = ∅ ) ) |