This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018) (Proof shortened by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdnd | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( ( F < 0 \/ L <_ F \/ ( # ` W ) < L ) -> ( W substr <. F , L >. ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orcomb | |- ( ( F < 0 \/ L <_ F \/ ( # ` W ) < L ) <-> ( F < 0 \/ ( # ` W ) < L \/ L <_ F ) ) |
|
| 2 | df-3or | |- ( ( F < 0 \/ ( # ` W ) < L \/ L <_ F ) <-> ( ( F < 0 \/ ( # ` W ) < L ) \/ L <_ F ) ) |
|
| 3 | 1 2 | bitri | |- ( ( F < 0 \/ L <_ F \/ ( # ` W ) < L ) <-> ( ( F < 0 \/ ( # ` W ) < L ) \/ L <_ F ) ) |
| 4 | swrdlend | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( L <_ F -> ( W substr <. F , L >. ) = (/) ) ) |
|
| 5 | 4 | com12 | |- ( L <_ F -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( W substr <. F , L >. ) = (/) ) ) |
| 6 | swrdval | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( W substr <. F , L >. ) = if ( ( F ..^ L ) C_ dom W , ( i e. ( 0 ..^ ( L - F ) ) |-> ( W ` ( i + F ) ) ) , (/) ) ) |
|
| 7 | 6 | adantl | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> ( W substr <. F , L >. ) = if ( ( F ..^ L ) C_ dom W , ( i e. ( 0 ..^ ( L - F ) ) |-> ( W ` ( i + F ) ) ) , (/) ) ) |
| 8 | zre | |- ( F e. ZZ -> F e. RR ) |
|
| 9 | 0red | |- ( F e. ZZ -> 0 e. RR ) |
|
| 10 | 8 9 | ltnled | |- ( F e. ZZ -> ( F < 0 <-> -. 0 <_ F ) ) |
| 11 | 10 | 3ad2ant2 | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( F < 0 <-> -. 0 <_ F ) ) |
| 12 | lencl | |- ( W e. Word V -> ( # ` W ) e. NN0 ) |
|
| 13 | 12 | nn0red | |- ( W e. Word V -> ( # ` W ) e. RR ) |
| 14 | zre | |- ( L e. ZZ -> L e. RR ) |
|
| 15 | 13 14 | anim12i | |- ( ( W e. Word V /\ L e. ZZ ) -> ( ( # ` W ) e. RR /\ L e. RR ) ) |
| 16 | 15 | 3adant2 | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( ( # ` W ) e. RR /\ L e. RR ) ) |
| 17 | ltnle | |- ( ( ( # ` W ) e. RR /\ L e. RR ) -> ( ( # ` W ) < L <-> -. L <_ ( # ` W ) ) ) |
|
| 18 | 16 17 | syl | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( ( # ` W ) < L <-> -. L <_ ( # ` W ) ) ) |
| 19 | 11 18 | orbi12d | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( ( F < 0 \/ ( # ` W ) < L ) <-> ( -. 0 <_ F \/ -. L <_ ( # ` W ) ) ) ) |
| 20 | 19 | biimpcd | |- ( ( F < 0 \/ ( # ` W ) < L ) -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( -. 0 <_ F \/ -. L <_ ( # ` W ) ) ) ) |
| 21 | 20 | adantr | |- ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( -. 0 <_ F \/ -. L <_ ( # ` W ) ) ) ) |
| 22 | 21 | imp | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> ( -. 0 <_ F \/ -. L <_ ( # ` W ) ) ) |
| 23 | ianor | |- ( -. ( 0 <_ F /\ L <_ ( # ` W ) ) <-> ( -. 0 <_ F \/ -. L <_ ( # ` W ) ) ) |
|
| 24 | 22 23 | sylibr | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> -. ( 0 <_ F /\ L <_ ( # ` W ) ) ) |
| 25 | 3simpc | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( F e. ZZ /\ L e. ZZ ) ) |
|
| 26 | 12 | nn0zd | |- ( W e. Word V -> ( # ` W ) e. ZZ ) |
| 27 | 0z | |- 0 e. ZZ |
|
| 28 | 26 27 | jctil | |- ( W e. Word V -> ( 0 e. ZZ /\ ( # ` W ) e. ZZ ) ) |
| 29 | 28 | 3ad2ant1 | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( 0 e. ZZ /\ ( # ` W ) e. ZZ ) ) |
| 30 | ltnle | |- ( ( F e. RR /\ L e. RR ) -> ( F < L <-> -. L <_ F ) ) |
|
| 31 | 8 14 30 | syl2an | |- ( ( F e. ZZ /\ L e. ZZ ) -> ( F < L <-> -. L <_ F ) ) |
| 32 | 31 | 3adant1 | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( F < L <-> -. L <_ F ) ) |
| 33 | 32 | biimprcd | |- ( -. L <_ F -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> F < L ) ) |
| 34 | 33 | adantl | |- ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> F < L ) ) |
| 35 | 34 | imp | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> F < L ) |
| 36 | ssfzo12bi | |- ( ( ( F e. ZZ /\ L e. ZZ ) /\ ( 0 e. ZZ /\ ( # ` W ) e. ZZ ) /\ F < L ) -> ( ( F ..^ L ) C_ ( 0 ..^ ( # ` W ) ) <-> ( 0 <_ F /\ L <_ ( # ` W ) ) ) ) |
|
| 37 | 25 29 35 36 | syl2an23an | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> ( ( F ..^ L ) C_ ( 0 ..^ ( # ` W ) ) <-> ( 0 <_ F /\ L <_ ( # ` W ) ) ) ) |
| 38 | 24 37 | mtbird | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> -. ( F ..^ L ) C_ ( 0 ..^ ( # ` W ) ) ) |
| 39 | wrddm | |- ( W e. Word V -> dom W = ( 0 ..^ ( # ` W ) ) ) |
|
| 40 | 39 | sseq2d | |- ( W e. Word V -> ( ( F ..^ L ) C_ dom W <-> ( F ..^ L ) C_ ( 0 ..^ ( # ` W ) ) ) ) |
| 41 | 40 | notbid | |- ( W e. Word V -> ( -. ( F ..^ L ) C_ dom W <-> -. ( F ..^ L ) C_ ( 0 ..^ ( # ` W ) ) ) ) |
| 42 | 41 | 3ad2ant1 | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( -. ( F ..^ L ) C_ dom W <-> -. ( F ..^ L ) C_ ( 0 ..^ ( # ` W ) ) ) ) |
| 43 | 42 | adantl | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> ( -. ( F ..^ L ) C_ dom W <-> -. ( F ..^ L ) C_ ( 0 ..^ ( # ` W ) ) ) ) |
| 44 | 38 43 | mpbird | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> -. ( F ..^ L ) C_ dom W ) |
| 45 | 44 | iffalsed | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> if ( ( F ..^ L ) C_ dom W , ( i e. ( 0 ..^ ( L - F ) ) |-> ( W ` ( i + F ) ) ) , (/) ) = (/) ) |
| 46 | 7 45 | eqtrd | |- ( ( ( ( F < 0 \/ ( # ` W ) < L ) /\ -. L <_ F ) /\ ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) ) -> ( W substr <. F , L >. ) = (/) ) |
| 47 | 46 | exp31 | |- ( ( F < 0 \/ ( # ` W ) < L ) -> ( -. L <_ F -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( W substr <. F , L >. ) = (/) ) ) ) |
| 48 | 47 | impcom | |- ( ( -. L <_ F /\ ( F < 0 \/ ( # ` W ) < L ) ) -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( W substr <. F , L >. ) = (/) ) ) |
| 49 | 5 48 | jaoi3 | |- ( ( L <_ F \/ ( F < 0 \/ ( # ` W ) < L ) ) -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( W substr <. F , L >. ) = (/) ) ) |
| 50 | 49 | orcoms | |- ( ( ( F < 0 \/ ( # ` W ) < L ) \/ L <_ F ) -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( W substr <. F , L >. ) = (/) ) ) |
| 51 | 3 50 | sylbi | |- ( ( F < 0 \/ L <_ F \/ ( # ` W ) < L ) -> ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( W substr <. F , L >. ) = (/) ) ) |
| 52 | 51 | com12 | |- ( ( W e. Word V /\ F e. ZZ /\ L e. ZZ ) -> ( ( F < 0 \/ L <_ F \/ ( # ` W ) < L ) -> ( W substr <. F , L >. ) = (/) ) ) |