This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swoer.1 | ⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) | |
| swoer.2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) ) | ||
| swoer.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) | ||
| swoord.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | ||
| swoord.5 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| swoord.6 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | ||
| Assertion | swoord2 | ⊢ ( 𝜑 → ( 𝐶 < 𝐴 ↔ 𝐶 < 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | ⊢ 𝑅 = ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) | |
| 2 | swoer.2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 < 𝑧 → ¬ 𝑧 < 𝑦 ) ) | |
| 3 | swoer.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 < 𝑦 → ( 𝑥 < 𝑧 ∨ 𝑧 < 𝑦 ) ) ) | |
| 4 | swoord.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | |
| 5 | swoord.5 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 6 | swoord.6 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | |
| 7 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 8 | difss | ⊢ ( ( 𝑋 × 𝑋 ) ∖ ( < ∪ ◡ < ) ) ⊆ ( 𝑋 × 𝑋 ) | |
| 9 | 1 8 | eqsstri | ⊢ 𝑅 ⊆ ( 𝑋 × 𝑋 ) |
| 10 | 9 | ssbri | ⊢ ( 𝐴 𝑅 𝐵 → 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ) |
| 11 | df-br | ⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) | |
| 12 | opelxp1 | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 13 | 11 12 | sylbi | ⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 → 𝐴 ∈ 𝑋 ) |
| 14 | 6 10 13 | 3syl | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 15 | 3 | swopolem | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐶 < 𝐴 → ( 𝐶 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 16 | 7 5 14 4 15 | syl13anc | ⊢ ( 𝜑 → ( 𝐶 < 𝐴 → ( 𝐶 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 17 | idd | ⊢ ( 𝜑 → ( 𝐶 < 𝐵 → 𝐶 < 𝐵 ) ) | |
| 18 | 1 | brdifun | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 19 | 14 4 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 20 | 6 19 | mpbid | ⊢ ( 𝜑 → ¬ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 21 | olc | ⊢ ( 𝐵 < 𝐴 → ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) | |
| 22 | 20 21 | nsyl | ⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
| 23 | 22 | pm2.21d | ⊢ ( 𝜑 → ( 𝐵 < 𝐴 → 𝐶 < 𝐵 ) ) |
| 24 | 17 23 | jaod | ⊢ ( 𝜑 → ( ( 𝐶 < 𝐵 ∨ 𝐵 < 𝐴 ) → 𝐶 < 𝐵 ) ) |
| 25 | 16 24 | syld | ⊢ ( 𝜑 → ( 𝐶 < 𝐴 → 𝐶 < 𝐵 ) ) |
| 26 | 3 | swopolem | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐶 < 𝐵 → ( 𝐶 < 𝐴 ∨ 𝐴 < 𝐵 ) ) ) |
| 27 | 7 5 4 14 26 | syl13anc | ⊢ ( 𝜑 → ( 𝐶 < 𝐵 → ( 𝐶 < 𝐴 ∨ 𝐴 < 𝐵 ) ) ) |
| 28 | idd | ⊢ ( 𝜑 → ( 𝐶 < 𝐴 → 𝐶 < 𝐴 ) ) | |
| 29 | orc | ⊢ ( 𝐴 < 𝐵 → ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) | |
| 30 | 20 29 | nsyl | ⊢ ( 𝜑 → ¬ 𝐴 < 𝐵 ) |
| 31 | 30 | pm2.21d | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 → 𝐶 < 𝐴 ) ) |
| 32 | 28 31 | jaod | ⊢ ( 𝜑 → ( ( 𝐶 < 𝐴 ∨ 𝐴 < 𝐵 ) → 𝐶 < 𝐴 ) ) |
| 33 | 27 32 | syld | ⊢ ( 𝜑 → ( 𝐶 < 𝐵 → 𝐶 < 𝐴 ) ) |
| 34 | 25 33 | impbid | ⊢ ( 𝜑 → ( 𝐶 < 𝐴 ↔ 𝐶 < 𝐵 ) ) |