This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| swoer.2 | |- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
||
| swoer.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
||
| swoord.4 | |- ( ph -> B e. X ) |
||
| swoord.5 | |- ( ph -> C e. X ) |
||
| swoord.6 | |- ( ph -> A R B ) |
||
| Assertion | swoord2 | |- ( ph -> ( C .< A <-> C .< B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| 2 | swoer.2 | |- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
|
| 3 | swoer.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
|
| 4 | swoord.4 | |- ( ph -> B e. X ) |
|
| 5 | swoord.5 | |- ( ph -> C e. X ) |
|
| 6 | swoord.6 | |- ( ph -> A R B ) |
|
| 7 | id | |- ( ph -> ph ) |
|
| 8 | difss | |- ( ( X X. X ) \ ( .< u. `' .< ) ) C_ ( X X. X ) |
|
| 9 | 1 8 | eqsstri | |- R C_ ( X X. X ) |
| 10 | 9 | ssbri | |- ( A R B -> A ( X X. X ) B ) |
| 11 | df-br | |- ( A ( X X. X ) B <-> <. A , B >. e. ( X X. X ) ) |
|
| 12 | opelxp1 | |- ( <. A , B >. e. ( X X. X ) -> A e. X ) |
|
| 13 | 11 12 | sylbi | |- ( A ( X X. X ) B -> A e. X ) |
| 14 | 6 10 13 | 3syl | |- ( ph -> A e. X ) |
| 15 | 3 | swopolem | |- ( ( ph /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( C .< A -> ( C .< B \/ B .< A ) ) ) |
| 16 | 7 5 14 4 15 | syl13anc | |- ( ph -> ( C .< A -> ( C .< B \/ B .< A ) ) ) |
| 17 | idd | |- ( ph -> ( C .< B -> C .< B ) ) |
|
| 18 | 1 | brdifun | |- ( ( A e. X /\ B e. X ) -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
| 19 | 14 4 18 | syl2anc | |- ( ph -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
| 20 | 6 19 | mpbid | |- ( ph -> -. ( A .< B \/ B .< A ) ) |
| 21 | olc | |- ( B .< A -> ( A .< B \/ B .< A ) ) |
|
| 22 | 20 21 | nsyl | |- ( ph -> -. B .< A ) |
| 23 | 22 | pm2.21d | |- ( ph -> ( B .< A -> C .< B ) ) |
| 24 | 17 23 | jaod | |- ( ph -> ( ( C .< B \/ B .< A ) -> C .< B ) ) |
| 25 | 16 24 | syld | |- ( ph -> ( C .< A -> C .< B ) ) |
| 26 | 3 | swopolem | |- ( ( ph /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( C .< B -> ( C .< A \/ A .< B ) ) ) |
| 27 | 7 5 4 14 26 | syl13anc | |- ( ph -> ( C .< B -> ( C .< A \/ A .< B ) ) ) |
| 28 | idd | |- ( ph -> ( C .< A -> C .< A ) ) |
|
| 29 | orc | |- ( A .< B -> ( A .< B \/ B .< A ) ) |
|
| 30 | 20 29 | nsyl | |- ( ph -> -. A .< B ) |
| 31 | 30 | pm2.21d | |- ( ph -> ( A .< B -> C .< A ) ) |
| 32 | 28 31 | jaod | |- ( ph -> ( ( C .< A \/ A .< B ) -> C .< A ) ) |
| 33 | 27 32 | syld | |- ( ph -> ( C .< B -> C .< A ) ) |
| 34 | 25 33 | impbid | |- ( ph -> ( C .< A <-> C .< B ) ) |