This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supicc.1 | |- ( ph -> B e. RR ) |
|
| supicc.2 | |- ( ph -> C e. RR ) |
||
| supicc.3 | |- ( ph -> A C_ ( B [,] C ) ) |
||
| supicc.4 | |- ( ph -> A =/= (/) ) |
||
| supiccub.1 | |- ( ph -> D e. A ) |
||
| Assertion | supicclub | |- ( ph -> ( D < sup ( A , RR , < ) <-> E. z e. A D < z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supicc.1 | |- ( ph -> B e. RR ) |
|
| 2 | supicc.2 | |- ( ph -> C e. RR ) |
|
| 3 | supicc.3 | |- ( ph -> A C_ ( B [,] C ) ) |
|
| 4 | supicc.4 | |- ( ph -> A =/= (/) ) |
|
| 5 | supiccub.1 | |- ( ph -> D e. A ) |
|
| 6 | iccssre | |- ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR ) |
|
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( B [,] C ) C_ RR ) |
| 8 | 3 7 | sstrd | |- ( ph -> A C_ RR ) |
| 9 | 1 | adantr | |- ( ( ph /\ x e. A ) -> B e. RR ) |
| 10 | 9 | rexrd | |- ( ( ph /\ x e. A ) -> B e. RR* ) |
| 11 | 2 | adantr | |- ( ( ph /\ x e. A ) -> C e. RR ) |
| 12 | 11 | rexrd | |- ( ( ph /\ x e. A ) -> C e. RR* ) |
| 13 | 3 | sselda | |- ( ( ph /\ x e. A ) -> x e. ( B [,] C ) ) |
| 14 | iccleub | |- ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> x <_ C ) |
|
| 15 | 10 12 13 14 | syl3anc | |- ( ( ph /\ x e. A ) -> x <_ C ) |
| 16 | 15 | ralrimiva | |- ( ph -> A. x e. A x <_ C ) |
| 17 | brralrspcev | |- ( ( C e. RR /\ A. x e. A x <_ C ) -> E. y e. RR A. x e. A x <_ y ) |
|
| 18 | 2 16 17 | syl2anc | |- ( ph -> E. y e. RR A. x e. A x <_ y ) |
| 19 | 8 5 | sseldd | |- ( ph -> D e. RR ) |
| 20 | suprlub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) /\ D e. RR ) -> ( D < sup ( A , RR , < ) <-> E. z e. A D < z ) ) |
|
| 21 | 8 4 18 19 20 | syl31anc | |- ( ph -> ( D < sup ( A , RR , < ) <-> E. z e. A D < z ) ) |