This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supicc.1 | ||
| supicc.2 | |||
| supicc.3 | |||
| supicc.4 | |||
| supiccub.1 | |||
| Assertion | supicclub |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supicc.1 | ||
| 2 | supicc.2 | ||
| 3 | supicc.3 | ||
| 4 | supicc.4 | ||
| 5 | supiccub.1 | ||
| 6 | iccssre | ||
| 7 | 1 2 6 | syl2anc | |
| 8 | 3 7 | sstrd | |
| 9 | 1 | adantr | |
| 10 | 9 | rexrd | |
| 11 | 2 | adantr | |
| 12 | 11 | rexrd | |
| 13 | 3 | sselda | |
| 14 | iccleub | ||
| 15 | 10 12 13 14 | syl3anc | |
| 16 | 15 | ralrimiva | |
| 17 | brralrspcev | ||
| 18 | 2 16 17 | syl2anc | |
| 19 | 8 5 | sseldd | |
| 20 | suprlub | ||
| 21 | 8 4 18 19 20 | syl31anc |