This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl ). (Contributed by Paul Chapman, 21-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccsupr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ 𝑆 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 2 | sstr | ⊢ ( ( 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → 𝑆 ⊆ ℝ ) | |
| 3 | 2 | ancoms | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → 𝑆 ⊆ ℝ ) |
| 4 | 1 3 | sylan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → 𝑆 ⊆ ℝ ) |
| 5 | 4 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ 𝑆 ) → 𝑆 ⊆ ℝ ) |
| 6 | ne0i | ⊢ ( 𝐶 ∈ 𝑆 → 𝑆 ≠ ∅ ) | |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ 𝑆 ) → 𝑆 ≠ ∅ ) |
| 8 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 9 | ssel | ⊢ ( 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 10 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) | |
| 11 | 10 | biimpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 12 | 9 11 | sylan9r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ 𝑆 → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 13 | 12 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 14 | 13 | simp3d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ 𝐵 ) |
| 15 | 14 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) |
| 16 | brralrspcev | ⊢ ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) | |
| 17 | 8 15 16 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
| 18 | 17 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ 𝑆 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
| 19 | 5 7 18 | 3jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ 𝑆 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |