This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-4.1 of Gleason p. 126. (Contributed by NM, 25-Jul-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-enr | ⊢ ~R = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cer | ⊢ ~R | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | cnp | ⊢ P | |
| 5 | 4 4 | cxp | ⊢ ( P × P ) |
| 6 | 3 5 | wcel | ⊢ 𝑥 ∈ ( P × P ) |
| 7 | 2 | cv | ⊢ 𝑦 |
| 8 | 7 5 | wcel | ⊢ 𝑦 ∈ ( P × P ) |
| 9 | 6 8 | wa | ⊢ ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) |
| 10 | vz | ⊢ 𝑧 | |
| 11 | vw | ⊢ 𝑤 | |
| 12 | vv | ⊢ 𝑣 | |
| 13 | vu | ⊢ 𝑢 | |
| 14 | 10 | cv | ⊢ 𝑧 |
| 15 | 11 | cv | ⊢ 𝑤 |
| 16 | 14 15 | cop | ⊢ 〈 𝑧 , 𝑤 〉 |
| 17 | 3 16 | wceq | ⊢ 𝑥 = 〈 𝑧 , 𝑤 〉 |
| 18 | 12 | cv | ⊢ 𝑣 |
| 19 | 13 | cv | ⊢ 𝑢 |
| 20 | 18 19 | cop | ⊢ 〈 𝑣 , 𝑢 〉 |
| 21 | 7 20 | wceq | ⊢ 𝑦 = 〈 𝑣 , 𝑢 〉 |
| 22 | 17 21 | wa | ⊢ ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) |
| 23 | cpp | ⊢ +P | |
| 24 | 14 19 23 | co | ⊢ ( 𝑧 +P 𝑢 ) |
| 25 | 15 18 23 | co | ⊢ ( 𝑤 +P 𝑣 ) |
| 26 | 24 25 | wceq | ⊢ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) |
| 27 | 22 26 | wa | ⊢ ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) |
| 28 | 27 13 | wex | ⊢ ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) |
| 29 | 28 12 | wex | ⊢ ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) |
| 30 | 29 11 | wex | ⊢ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) |
| 31 | 30 10 | wex | ⊢ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) |
| 32 | 9 31 | wa | ⊢ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) |
| 33 | 32 1 2 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) } |
| 34 | 0 33 | wceq | ⊢ ~R = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( P × P ) ∧ 𝑦 ∈ ( P × P ) ) ∧ ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 〈 𝑧 , 𝑤 〉 ∧ 𝑦 = 〈 𝑣 , 𝑢 〉 ) ∧ ( 𝑧 +P 𝑢 ) = ( 𝑤 +P 𝑣 ) ) ) } |