This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum of a singleton is the term. The deduction version of sumsn . (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumsnd.1 | |- ( ph -> F/_ k B ) |
|
| sumsnd.2 | |- F/ k ph |
||
| sumsnd.3 | |- ( ( ph /\ k = M ) -> A = B ) |
||
| sumsnd.4 | |- ( ph -> M e. V ) |
||
| sumsnd.5 | |- ( ph -> B e. CC ) |
||
| Assertion | sumsnd | |- ( ph -> sum_ k e. { M } A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumsnd.1 | |- ( ph -> F/_ k B ) |
|
| 2 | sumsnd.2 | |- F/ k ph |
|
| 3 | sumsnd.3 | |- ( ( ph /\ k = M ) -> A = B ) |
|
| 4 | sumsnd.4 | |- ( ph -> M e. V ) |
|
| 5 | sumsnd.5 | |- ( ph -> B e. CC ) |
|
| 6 | csbeq1a | |- ( k = m -> A = [_ m / k ]_ A ) |
|
| 7 | nfcv | |- F/_ m A |
|
| 8 | nfcsb1v | |- F/_ k [_ m / k ]_ A |
|
| 9 | 6 7 8 | cbvsum | |- sum_ k e. { M } A = sum_ m e. { M } [_ m / k ]_ A |
| 10 | csbeq1 | |- ( m = ( { <. 1 , M >. } ` n ) -> [_ m / k ]_ A = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
|
| 11 | 1nn | |- 1 e. NN |
|
| 12 | 11 | a1i | |- ( ph -> 1 e. NN ) |
| 13 | f1osng | |- ( ( 1 e. NN /\ M e. V ) -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
|
| 14 | 11 4 13 | sylancr | |- ( ph -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 15 | 1z | |- 1 e. ZZ |
|
| 16 | fzsn | |- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
|
| 17 | f1oeq2 | |- ( ( 1 ... 1 ) = { 1 } -> ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) ) |
|
| 18 | 15 16 17 | mp2b | |- ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 19 | 14 18 | sylibr | |- ( ph -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 20 | elsni | |- ( m e. { M } -> m = M ) |
|
| 21 | 20 | adantl | |- ( ( ph /\ m e. { M } ) -> m = M ) |
| 22 | 21 | csbeq1d | |- ( ( ph /\ m e. { M } ) -> [_ m / k ]_ A = [_ M / k ]_ A ) |
| 23 | 2 1 4 3 | csbiedf | |- ( ph -> [_ M / k ]_ A = B ) |
| 24 | 23 | adantr | |- ( ( ph /\ m e. { M } ) -> [_ M / k ]_ A = B ) |
| 25 | 5 | adantr | |- ( ( ph /\ m e. { M } ) -> B e. CC ) |
| 26 | 24 25 | eqeltrd | |- ( ( ph /\ m e. { M } ) -> [_ M / k ]_ A e. CC ) |
| 27 | 22 26 | eqeltrd | |- ( ( ph /\ m e. { M } ) -> [_ m / k ]_ A e. CC ) |
| 28 | 23 | adantr | |- ( ( ph /\ n e. ( 1 ... 1 ) ) -> [_ M / k ]_ A = B ) |
| 29 | elfz1eq | |- ( n e. ( 1 ... 1 ) -> n = 1 ) |
|
| 30 | 29 | fveq2d | |- ( n e. ( 1 ... 1 ) -> ( { <. 1 , M >. } ` n ) = ( { <. 1 , M >. } ` 1 ) ) |
| 31 | fvsng | |- ( ( 1 e. NN /\ M e. V ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
|
| 32 | 11 4 31 | sylancr | |- ( ph -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 33 | 30 32 | sylan9eqr | |- ( ( ph /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , M >. } ` n ) = M ) |
| 34 | 33 | csbeq1d | |- ( ( ph /\ n e. ( 1 ... 1 ) ) -> [_ ( { <. 1 , M >. } ` n ) / k ]_ A = [_ M / k ]_ A ) |
| 35 | 29 | fveq2d | |- ( n e. ( 1 ... 1 ) -> ( { <. 1 , B >. } ` n ) = ( { <. 1 , B >. } ` 1 ) ) |
| 36 | fvsng | |- ( ( 1 e. NN /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
|
| 37 | 11 5 36 | sylancr | |- ( ph -> ( { <. 1 , B >. } ` 1 ) = B ) |
| 38 | 35 37 | sylan9eqr | |- ( ( ph /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = B ) |
| 39 | 28 34 38 | 3eqtr4rd | |- ( ( ph /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 40 | 10 12 19 27 39 | fsum | |- ( ph -> sum_ m e. { M } [_ m / k ]_ A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) |
| 41 | 9 40 | eqtrid | |- ( ph -> sum_ k e. { M } A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) |
| 42 | 15 37 | seq1i | |- ( ph -> ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) = B ) |
| 43 | 41 42 | eqtrd | |- ( ph -> sum_ k e. { M } A = B ) |