This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfsum1.1 | ⊢ Ⅎ 𝑘 𝐴 | |
| Assertion | nfsum1 | ⊢ Ⅎ 𝑘 Σ 𝑘 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsum1.1 | ⊢ Ⅎ 𝑘 𝐴 | |
| 2 | df-sum | ⊢ Σ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑘 ℤ | |
| 4 | nfcv | ⊢ Ⅎ 𝑘 ( ℤ≥ ‘ 𝑚 ) | |
| 5 | 1 4 | nfss | ⊢ Ⅎ 𝑘 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) |
| 6 | nfcv | ⊢ Ⅎ 𝑘 𝑚 | |
| 7 | nfcv | ⊢ Ⅎ 𝑘 + | |
| 8 | 1 | nfcri | ⊢ Ⅎ 𝑘 𝑛 ∈ 𝐴 |
| 9 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐵 | |
| 10 | nfcv | ⊢ Ⅎ 𝑘 0 | |
| 11 | 8 9 10 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) |
| 12 | 3 11 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) |
| 13 | 6 7 12 | nfseq | ⊢ Ⅎ 𝑘 seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) |
| 14 | nfcv | ⊢ Ⅎ 𝑘 ⇝ | |
| 15 | nfcv | ⊢ Ⅎ 𝑘 𝑥 | |
| 16 | 13 14 15 | nfbr | ⊢ Ⅎ 𝑘 seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 |
| 17 | 5 16 | nfan | ⊢ Ⅎ 𝑘 ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) |
| 18 | 3 17 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) |
| 19 | nfcv | ⊢ Ⅎ 𝑘 ℕ | |
| 20 | nfcv | ⊢ Ⅎ 𝑘 𝑓 | |
| 21 | nfcv | ⊢ Ⅎ 𝑘 ( 1 ... 𝑚 ) | |
| 22 | 20 21 1 | nff1o | ⊢ Ⅎ 𝑘 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 |
| 23 | nfcv | ⊢ Ⅎ 𝑘 1 | |
| 24 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 | |
| 25 | 19 24 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
| 26 | 23 7 25 | nfseq | ⊢ Ⅎ 𝑘 seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
| 27 | 26 6 | nffv | ⊢ Ⅎ 𝑘 ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
| 28 | 27 | nfeq2 | ⊢ Ⅎ 𝑘 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
| 29 | 22 28 | nfan | ⊢ Ⅎ 𝑘 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 30 | 29 | nfex | ⊢ Ⅎ 𝑘 ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 31 | 19 30 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
| 32 | 18 31 | nfor | ⊢ Ⅎ 𝑘 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
| 33 | 32 | nfiotaw | ⊢ Ⅎ 𝑘 ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
| 34 | 2 33 | nfcxfr | ⊢ Ⅎ 𝑘 Σ 𝑘 ∈ 𝐴 𝐵 |