This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of a transitive class is transitive. suctrALTcf , using conventional notation, was translated from virtual deduction form, suctrALTcfVD , using a translation program. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suctrALTcf | ⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid | ⊢ 𝐴 ⊆ suc 𝐴 | |
| 2 | id | ⊢ ( Tr 𝐴 → Tr 𝐴 ) | |
| 3 | id | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) | |
| 4 | simpl | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝑦 ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝑦 ) |
| 6 | id | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) | |
| 7 | trel | ⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) | |
| 8 | 7 | 3impib | ⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 9 | 2 5 6 8 | syl3an | ⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 10 | ssel2 | ⊢ ( ( 𝐴 ⊆ suc 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ suc 𝐴 ) | |
| 11 | 1 9 10 | eel0321old | ⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ suc 𝐴 ) |
| 12 | 11 | 3expia | ⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
| 13 | id | ⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) | |
| 14 | eleq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 15 | 14 | biimpac | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 16 | 5 13 15 | syl2an | ⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) |
| 17 | 1 16 10 | eel021old | ⊢ ( ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ∧ 𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) |
| 18 | 17 | ex | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
| 19 | simpr | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 ) | |
| 20 | 3 19 | syl | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 ) |
| 21 | elsuci | ⊢ ( 𝑦 ∈ suc 𝐴 → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
| 23 | jao | ⊢ ( ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) ) | |
| 24 | 23 | 3imp | ⊢ ( ( ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ∧ ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ∧ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) → 𝑧 ∈ suc 𝐴 ) |
| 25 | 12 18 22 24 | eel2122old | ⊢ ( ( Tr 𝐴 ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) → 𝑧 ∈ suc 𝐴 ) |
| 26 | 25 | ex | ⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 27 | 26 | alrimivv | ⊢ ( Tr 𝐴 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 28 | dftr2 | ⊢ ( Tr suc 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) | |
| 29 | 28 | biimpri | ⊢ ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) → Tr suc 𝐴 ) |
| 30 | 27 29 | syl | ⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |
| 31 | 30 | iin1 | ⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |