This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of a transitive class is transitive. suctrALTcf , using conventional notation, was translated from virtual deduction form, suctrALTcfVD , using a translation program. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suctrALTcf | |- ( Tr A -> Tr suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid | |- A C_ suc A |
|
| 2 | id | |- ( Tr A -> Tr A ) |
|
| 3 | id | |- ( ( z e. y /\ y e. suc A ) -> ( z e. y /\ y e. suc A ) ) |
|
| 4 | simpl | |- ( ( z e. y /\ y e. suc A ) -> z e. y ) |
|
| 5 | 3 4 | syl | |- ( ( z e. y /\ y e. suc A ) -> z e. y ) |
| 6 | id | |- ( y e. A -> y e. A ) |
|
| 7 | trel | |- ( Tr A -> ( ( z e. y /\ y e. A ) -> z e. A ) ) |
|
| 8 | 7 | 3impib | |- ( ( Tr A /\ z e. y /\ y e. A ) -> z e. A ) |
| 9 | 2 5 6 8 | syl3an | |- ( ( Tr A /\ ( z e. y /\ y e. suc A ) /\ y e. A ) -> z e. A ) |
| 10 | ssel2 | |- ( ( A C_ suc A /\ z e. A ) -> z e. suc A ) |
|
| 11 | 1 9 10 | eel0321old | |- ( ( Tr A /\ ( z e. y /\ y e. suc A ) /\ y e. A ) -> z e. suc A ) |
| 12 | 11 | 3expia | |- ( ( Tr A /\ ( z e. y /\ y e. suc A ) ) -> ( y e. A -> z e. suc A ) ) |
| 13 | id | |- ( y = A -> y = A ) |
|
| 14 | eleq2 | |- ( y = A -> ( z e. y <-> z e. A ) ) |
|
| 15 | 14 | biimpac | |- ( ( z e. y /\ y = A ) -> z e. A ) |
| 16 | 5 13 15 | syl2an | |- ( ( ( z e. y /\ y e. suc A ) /\ y = A ) -> z e. A ) |
| 17 | 1 16 10 | eel021old | |- ( ( ( z e. y /\ y e. suc A ) /\ y = A ) -> z e. suc A ) |
| 18 | 17 | ex | |- ( ( z e. y /\ y e. suc A ) -> ( y = A -> z e. suc A ) ) |
| 19 | simpr | |- ( ( z e. y /\ y e. suc A ) -> y e. suc A ) |
|
| 20 | 3 19 | syl | |- ( ( z e. y /\ y e. suc A ) -> y e. suc A ) |
| 21 | elsuci | |- ( y e. suc A -> ( y e. A \/ y = A ) ) |
|
| 22 | 20 21 | syl | |- ( ( z e. y /\ y e. suc A ) -> ( y e. A \/ y = A ) ) |
| 23 | jao | |- ( ( y e. A -> z e. suc A ) -> ( ( y = A -> z e. suc A ) -> ( ( y e. A \/ y = A ) -> z e. suc A ) ) ) |
|
| 24 | 23 | 3imp | |- ( ( ( y e. A -> z e. suc A ) /\ ( y = A -> z e. suc A ) /\ ( y e. A \/ y = A ) ) -> z e. suc A ) |
| 25 | 12 18 22 24 | eel2122old | |- ( ( Tr A /\ ( z e. y /\ y e. suc A ) ) -> z e. suc A ) |
| 26 | 25 | ex | |- ( Tr A -> ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ) |
| 27 | 26 | alrimivv | |- ( Tr A -> A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ) |
| 28 | dftr2 | |- ( Tr suc A <-> A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) ) |
|
| 29 | 28 | biimpri | |- ( A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) -> Tr suc A ) |
| 30 | 27 29 | syl | |- ( Tr A -> Tr suc A ) |
| 31 | 30 | iin1 | |- ( Tr A -> Tr suc A ) |