This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two ordinals is an ordinal. (Contributed by Scott Fenton, 9-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onun2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ 𝐵 ) ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) | |
| 2 | eleq1a | ⊢ ( 𝐵 ∈ On → ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → ( 𝐴 ∪ 𝐵 ) ∈ On ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → ( 𝐴 ∪ 𝐵 ) ∈ On ) ) |
| 4 | 1 3 | biimtrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐵 ) ∈ On ) ) |
| 5 | ssequn2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐴 ) | |
| 6 | eleq1a | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → ( 𝐴 ∪ 𝐵 ) ∈ On ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → ( 𝐴 ∪ 𝐵 ) ∈ On ) ) |
| 8 | 5 7 | biimtrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∪ 𝐵 ) ∈ On ) ) |
| 9 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 10 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 11 | ordtri2or2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) | |
| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 13 | 4 8 12 | mpjaod | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∪ 𝐵 ) ∈ On ) |