This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double subtraction. (Contributed by NM, 30-Jun-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsub2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵 − 𝐶 ) ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 4 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 6 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
| 8 | 2 3 7 | add12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) = ( 𝐴 + ( ( 𝐵 − 𝐶 ) + ( 𝐶 − 𝐵 ) ) ) ) |
| 9 | npncan2 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + ( 𝐶 − 𝐵 ) ) = 0 ) | |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + ( 𝐶 − 𝐵 ) ) = 0 ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( ( 𝐵 − 𝐶 ) + ( 𝐶 − 𝐵 ) ) ) = ( 𝐴 + 0 ) ) |
| 12 | 3 | addridd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 13 | 8 11 12 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) = 𝐴 ) |
| 14 | 3 7 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐶 − 𝐵 ) ) ∈ ℂ ) |
| 15 | subadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 − 𝐶 ) ∈ ℂ ∧ ( 𝐴 + ( 𝐶 − 𝐵 ) ) ∈ ℂ ) → ( ( 𝐴 − ( 𝐵 − 𝐶 ) ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ↔ ( ( 𝐵 − 𝐶 ) + ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) = 𝐴 ) ) | |
| 16 | 3 2 14 15 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − ( 𝐵 − 𝐶 ) ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ↔ ( ( 𝐵 − 𝐶 ) + ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) = 𝐴 ) ) |
| 17 | 13 16 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵 − 𝐶 ) ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) |