This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgmvr.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| subrgmvr.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| subrgmvr.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| subrgmvr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| subrgmvrf.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | ||
| subrgmvrf.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| Assertion | subrgmvrf | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgmvr.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 2 | subrgmvr.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | subrgmvr.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 4 | subrgmvr.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 5 | subrgmvrf.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | |
| 6 | subrgmvrf.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 9 | subrgrcl | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 11 | 7 1 8 2 10 | mvrf | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 12 | 11 | ffnd | ⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
| 13 | 1 2 3 4 | subrgmvr | ⊢ ( 𝜑 → 𝑉 = ( 𝐼 mVar 𝐻 ) ) |
| 14 | 13 | fveq1d | ⊢ ( 𝜑 → ( 𝑉 ‘ 𝑥 ) = ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) = ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ) |
| 16 | eqid | ⊢ ( 𝐼 mVar 𝐻 ) = ( 𝐼 mVar 𝐻 ) | |
| 17 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 18 | 4 | subrgring | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐻 ∈ Ring ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 22 | 5 16 6 17 20 21 | mvrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 mVar 𝐻 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 23 | 15 22 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
| 24 | 23 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
| 25 | ffnfv | ⊢ ( 𝑉 : 𝐼 ⟶ 𝐵 ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 26 | 12 24 25 | sylanbrc | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |