This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subglsm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| subglsm.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| subglsm.a | ⊢ 𝐴 = ( LSSum ‘ 𝐻 ) | ||
| Assertion | subglsm | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑇 𝐴 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subglsm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | subglsm.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | subglsm.a | ⊢ 𝐴 = ( LSSum ‘ 𝐻 ) | |
| 4 | simp11 | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 1 5 | ressplusg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 7 | 4 6 | syl | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 8 | 7 | oveqd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 9 | 8 | mpoeq3dva | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
| 10 | 9 | rneqd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
| 11 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝐺 ∈ Grp ) |
| 13 | simp2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑆 ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 15 | 14 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 17 | 13 16 | sstrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 18 | simp3 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑈 ⊆ 𝑆 ) | |
| 19 | 18 16 | sstrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 20 | 14 5 2 | lsmvalx | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 21 | 12 17 19 20 | syl3anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 22 | 1 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝐻 ∈ Grp ) |
| 24 | 1 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 26 | 13 25 | sseqtrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑇 ⊆ ( Base ‘ 𝐻 ) ) |
| 27 | 18 25 | sseqtrd | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝐻 ) ) |
| 28 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 29 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 30 | 28 29 3 | lsmvalx | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐻 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐻 ) ) → ( 𝑇 𝐴 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
| 31 | 23 26 27 30 | syl3anc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑇 𝐴 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) ) |
| 32 | 10 21 31 | 3eqtr4d | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑇 𝐴 𝑈 ) ) |