This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subglsm.h | |- H = ( G |`s S ) |
|
| subglsm.s | |- .(+) = ( LSSum ` G ) |
||
| subglsm.a | |- A = ( LSSum ` H ) |
||
| Assertion | subglsm | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ( T .(+) U ) = ( T A U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subglsm.h | |- H = ( G |`s S ) |
|
| 2 | subglsm.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | subglsm.a | |- A = ( LSSum ` H ) |
|
| 4 | simp11 | |- ( ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) /\ x e. T /\ y e. U ) -> S e. ( SubGrp ` G ) ) |
|
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 1 5 | ressplusg | |- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 7 | 4 6 | syl | |- ( ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) /\ x e. T /\ y e. U ) -> ( +g ` G ) = ( +g ` H ) ) |
| 8 | 7 | oveqd | |- ( ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) /\ x e. T /\ y e. U ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 9 | 8 | mpoeq3dva | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) = ( x e. T , y e. U |-> ( x ( +g ` H ) y ) ) ) |
| 10 | 9 | rneqd | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ran ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) = ran ( x e. T , y e. U |-> ( x ( +g ` H ) y ) ) ) |
| 11 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> G e. Grp ) |
| 13 | simp2 | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> T C_ S ) |
|
| 14 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 15 | 14 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> S C_ ( Base ` G ) ) |
| 17 | 13 16 | sstrd | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> T C_ ( Base ` G ) ) |
| 18 | simp3 | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> U C_ S ) |
|
| 19 | 18 16 | sstrd | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> U C_ ( Base ` G ) ) |
| 20 | 14 5 2 | lsmvalx | |- ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) ) |
| 21 | 12 17 19 20 | syl3anc | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ( T .(+) U ) = ran ( x e. T , y e. U |-> ( x ( +g ` G ) y ) ) ) |
| 22 | 1 | subggrp | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 23 | 22 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> H e. Grp ) |
| 24 | 1 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 25 | 24 | 3ad2ant1 | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> S = ( Base ` H ) ) |
| 26 | 13 25 | sseqtrd | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> T C_ ( Base ` H ) ) |
| 27 | 18 25 | sseqtrd | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> U C_ ( Base ` H ) ) |
| 28 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 29 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 30 | 28 29 3 | lsmvalx | |- ( ( H e. Grp /\ T C_ ( Base ` H ) /\ U C_ ( Base ` H ) ) -> ( T A U ) = ran ( x e. T , y e. U |-> ( x ( +g ` H ) y ) ) ) |
| 31 | 23 26 27 30 | syl3anc | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ( T A U ) = ran ( x e. T , y e. U |-> ( x ( +g ` H ) y ) ) ) |
| 32 | 10 21 31 | 3eqtr4d | |- ( ( S e. ( SubGrp ` G ) /\ T C_ S /\ U C_ S ) -> ( T .(+) U ) = ( T A U ) ) |