This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for "not less than". ( chnlei analog.) (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssnle.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lssnle.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lssnle.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | lssnle | ⊢ ( 𝜑 → ( ¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssnle.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lssnle.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lssnle.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | 1 | lsmss2b | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑈 ⊆ 𝑇 ↔ ( 𝑇 ⊕ 𝑈 ) = 𝑇 ) ) |
| 5 | 2 3 4 | syl2anc | ⊢ ( 𝜑 → ( 𝑈 ⊆ 𝑇 ↔ ( 𝑇 ⊕ 𝑈 ) = 𝑇 ) ) |
| 6 | eqcom | ⊢ ( ( 𝑇 ⊕ 𝑈 ) = 𝑇 ↔ 𝑇 = ( 𝑇 ⊕ 𝑈 ) ) | |
| 7 | 5 6 | bitrdi | ⊢ ( 𝜑 → ( 𝑈 ⊆ 𝑇 ↔ 𝑇 = ( 𝑇 ⊕ 𝑈 ) ) ) |
| 8 | 7 | necon3bbid | ⊢ ( 𝜑 → ( ¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 9 | 1 | lsmub1 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 10 | 2 3 9 | syl2anc | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 11 | df-pss | ⊢ ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) | |
| 12 | 11 | baib | ⊢ ( 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) → ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝜑 → ( 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑇 ≠ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 14 | 8 13 | bitr4d | ⊢ ( 𝜑 → ( ¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ ( 𝑇 ⊕ 𝑈 ) ) ) |