This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Behavior of subgroups under isomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | subggim | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgim.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | gimghm | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 4 | ghmima | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 7 | 1 6 | gimf1o | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑆 ) ) |
| 8 | f1of1 | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ ( Base ‘ 𝑆 ) → 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑆 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) → 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑆 ) ) |
| 10 | f1imacnv | ⊢ ( ( 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
| 13 | ghmpreima | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 14 | 3 13 | sylan | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ∈ ( SubGrp ‘ 𝑅 ) ) |
| 15 | 12 14 | eqeltrrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) ∧ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 16 | 5 15 | impbida | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpIso 𝑆 ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ↔ ( 𝐹 “ 𝐴 ) ∈ ( SubGrp ‘ 𝑆 ) ) ) |