This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Behavior of subgroups under isomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgim.b | |- B = ( Base ` R ) |
|
| Assertion | subggim | |- ( ( F e. ( R GrpIso S ) /\ A C_ B ) -> ( A e. ( SubGrp ` R ) <-> ( F " A ) e. ( SubGrp ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgim.b | |- B = ( Base ` R ) |
|
| 2 | gimghm | |- ( F e. ( R GrpIso S ) -> F e. ( R GrpHom S ) ) |
|
| 3 | 2 | adantr | |- ( ( F e. ( R GrpIso S ) /\ A C_ B ) -> F e. ( R GrpHom S ) ) |
| 4 | ghmima | |- ( ( F e. ( R GrpHom S ) /\ A e. ( SubGrp ` R ) ) -> ( F " A ) e. ( SubGrp ` S ) ) |
|
| 5 | 3 4 | sylan | |- ( ( ( F e. ( R GrpIso S ) /\ A C_ B ) /\ A e. ( SubGrp ` R ) ) -> ( F " A ) e. ( SubGrp ` S ) ) |
| 6 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 7 | 1 6 | gimf1o | |- ( F e. ( R GrpIso S ) -> F : B -1-1-onto-> ( Base ` S ) ) |
| 8 | f1of1 | |- ( F : B -1-1-onto-> ( Base ` S ) -> F : B -1-1-> ( Base ` S ) ) |
|
| 9 | 7 8 | syl | |- ( F e. ( R GrpIso S ) -> F : B -1-1-> ( Base ` S ) ) |
| 10 | f1imacnv | |- ( ( F : B -1-1-> ( Base ` S ) /\ A C_ B ) -> ( `' F " ( F " A ) ) = A ) |
|
| 11 | 9 10 | sylan | |- ( ( F e. ( R GrpIso S ) /\ A C_ B ) -> ( `' F " ( F " A ) ) = A ) |
| 12 | 11 | adantr | |- ( ( ( F e. ( R GrpIso S ) /\ A C_ B ) /\ ( F " A ) e. ( SubGrp ` S ) ) -> ( `' F " ( F " A ) ) = A ) |
| 13 | ghmpreima | |- ( ( F e. ( R GrpHom S ) /\ ( F " A ) e. ( SubGrp ` S ) ) -> ( `' F " ( F " A ) ) e. ( SubGrp ` R ) ) |
|
| 14 | 3 13 | sylan | |- ( ( ( F e. ( R GrpIso S ) /\ A C_ B ) /\ ( F " A ) e. ( SubGrp ` S ) ) -> ( `' F " ( F " A ) ) e. ( SubGrp ` R ) ) |
| 15 | 12 14 | eqeltrrd | |- ( ( ( F e. ( R GrpIso S ) /\ A C_ B ) /\ ( F " A ) e. ( SubGrp ` S ) ) -> A e. ( SubGrp ` R ) ) |
| 16 | 5 15 | impbida | |- ( ( F e. ( R GrpIso S ) /\ A C_ B ) -> ( A e. ( SubGrp ` R ) <-> ( F " A ) e. ( SubGrp ` S ) ) ) |