This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of a difference in an earlier upper set of integers. (Contributed by AV, 10-May-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subeluzsub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 − 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ℤ ) | |
| 2 | zsubcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
| 4 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ∈ ℤ ) | |
| 5 | zsubcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑀 − 𝐾 ) ∈ ℤ ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 − 𝐾 ) ∈ ℤ ) |
| 7 | 4 | zred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ∈ ℝ ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ℝ ) |
| 9 | 1 | zred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ℝ ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑁 ∈ ℝ ) |
| 11 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑀 ∈ ℝ ) |
| 13 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝐾 ≤ 𝑁 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ≤ 𝑁 ) |
| 15 | 8 10 12 14 | lesub2dd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 − 𝑁 ) ≤ ( 𝑀 − 𝐾 ) ) |
| 16 | eluz2 | ⊢ ( ( 𝑀 − 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) ↔ ( ( 𝑀 − 𝑁 ) ∈ ℤ ∧ ( 𝑀 − 𝐾 ) ∈ ℤ ∧ ( 𝑀 − 𝑁 ) ≤ ( 𝑀 − 𝐾 ) ) ) | |
| 17 | 3 6 15 16 | syl3anbrc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 − 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 𝑁 ) ) ) |