This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of a difference in an earlier upper set of integers. (Contributed by AV, 10-May-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subeluzsub | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` K ) ) -> ( M - K ) e. ( ZZ>= ` ( M - N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | |- ( N e. ( ZZ>= ` K ) -> N e. ZZ ) |
|
| 2 | zsubcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
|
| 3 | 1 2 | sylan2 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` K ) ) -> ( M - N ) e. ZZ ) |
| 4 | eluzel2 | |- ( N e. ( ZZ>= ` K ) -> K e. ZZ ) |
|
| 5 | zsubcl | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( M - K ) e. ZZ ) |
|
| 6 | 4 5 | sylan2 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` K ) ) -> ( M - K ) e. ZZ ) |
| 7 | 4 | zred | |- ( N e. ( ZZ>= ` K ) -> K e. RR ) |
| 8 | 7 | adantl | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` K ) ) -> K e. RR ) |
| 9 | 1 | zred | |- ( N e. ( ZZ>= ` K ) -> N e. RR ) |
| 10 | 9 | adantl | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` K ) ) -> N e. RR ) |
| 11 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 12 | 11 | adantr | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` K ) ) -> M e. RR ) |
| 13 | eluzle | |- ( N e. ( ZZ>= ` K ) -> K <_ N ) |
|
| 14 | 13 | adantl | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` K ) ) -> K <_ N ) |
| 15 | 8 10 12 14 | lesub2dd | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` K ) ) -> ( M - N ) <_ ( M - K ) ) |
| 16 | eluz2 | |- ( ( M - K ) e. ( ZZ>= ` ( M - N ) ) <-> ( ( M - N ) e. ZZ /\ ( M - K ) e. ZZ /\ ( M - N ) <_ ( M - K ) ) ) |
|
| 17 | 3 6 15 16 | syl3anbrc | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` K ) ) -> ( M - K ) e. ( ZZ>= ` ( M - N ) ) ) |