This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgabl.h | ||
| Assertion | subcmn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgabl.h | ||
| 2 | eqidd | ||
| 3 | eqid | ||
| 4 | eqid | ||
| 5 | 3 4 | mndidcl | |
| 6 | n0i | ||
| 7 | 5 6 | syl | |
| 8 | reldmress | ||
| 9 | 8 | ovprc2 | |
| 10 | 1 9 | eqtrid | |
| 11 | 10 | fveq2d | |
| 12 | base0 | ||
| 13 | 11 12 | eqtr4di | |
| 14 | 7 13 | nsyl2 | |
| 15 | 14 | adantl | |
| 16 | eqid | ||
| 17 | 1 16 | ressplusg | |
| 18 | 15 17 | syl | |
| 19 | simpr | ||
| 20 | simpl | ||
| 21 | eqid | ||
| 22 | 1 21 | ressbasss | |
| 23 | 22 | sseli | |
| 24 | 22 | sseli | |
| 25 | 21 16 | cmncom | |
| 26 | 20 23 24 25 | syl3an | |
| 27 | 2 18 19 26 | iscmnd |