This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | structfn.1 | ⊢ 𝐹 Struct 〈 𝑀 , 𝑁 〉 | |
| Assertion | structfn | ⊢ ( Fun ◡ ◡ 𝐹 ∧ dom 𝐹 ⊆ ( 1 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structfn.1 | ⊢ 𝐹 Struct 〈 𝑀 , 𝑁 〉 | |
| 2 | 1 | structfun | ⊢ Fun ◡ ◡ 𝐹 |
| 3 | isstruct | ⊢ ( 𝐹 Struct 〈 𝑀 , 𝑁 〉 ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ) ) | |
| 4 | 1 3 | mpbi | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐹 ∖ { ∅ } ) ∧ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) ) |
| 5 | 4 | simp3i | ⊢ dom 𝐹 ⊆ ( 𝑀 ... 𝑁 ) |
| 6 | 4 | simp1i | ⊢ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) |
| 7 | 6 | simp1i | ⊢ 𝑀 ∈ ℕ |
| 8 | elnnuz | ⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 9 | 7 8 | mpbi | ⊢ 𝑀 ∈ ( ℤ≥ ‘ 1 ) |
| 10 | fzss1 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) |
| 12 | 5 11 | sstri | ⊢ dom 𝐹 ⊆ ( 1 ... 𝑁 ) |
| 13 | 2 12 | pm3.2i | ⊢ ( Fun ◡ ◡ 𝐹 ∧ dom 𝐹 ⊆ ( 1 ... 𝑁 ) ) |