This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | structfn.1 | |- F Struct <. M , N >. |
|
| Assertion | structfn | |- ( Fun `' `' F /\ dom F C_ ( 1 ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structfn.1 | |- F Struct <. M , N >. |
|
| 2 | 1 | structfun | |- Fun `' `' F |
| 3 | isstruct | |- ( F Struct <. M , N >. <-> ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( M ... N ) ) ) |
|
| 4 | 1 3 | mpbi | |- ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( M ... N ) ) |
| 5 | 4 | simp3i | |- dom F C_ ( M ... N ) |
| 6 | 4 | simp1i | |- ( M e. NN /\ N e. NN /\ M <_ N ) |
| 7 | 6 | simp1i | |- M e. NN |
| 8 | elnnuz | |- ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) |
|
| 9 | 7 8 | mpbi | |- M e. ( ZZ>= ` 1 ) |
| 10 | fzss1 | |- ( M e. ( ZZ>= ` 1 ) -> ( M ... N ) C_ ( 1 ... N ) ) |
|
| 11 | 9 10 | ax-mp | |- ( M ... N ) C_ ( 1 ... N ) |
| 12 | 5 11 | sstri | |- dom F C_ ( 1 ... N ) |
| 13 | 2 12 | pm3.2i | |- ( Fun `' `' F /\ dom F C_ ( 1 ... N ) ) |