This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | totbndss | ⊢ ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istotbnd | ⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 3 | sseq2 | ⊢ ( ∪ 𝑣 = 𝑋 → ( 𝑆 ⊆ ∪ 𝑣 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 4 | 3 | biimprcd | ⊢ ( 𝑆 ⊆ 𝑋 → ( ∪ 𝑣 = 𝑋 → 𝑆 ⊆ ∪ 𝑣 ) ) |
| 5 | 4 | anim1d | ⊢ ( 𝑆 ⊆ 𝑋 → ( ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 6 | 5 | reximdv | ⊢ ( 𝑆 ⊆ 𝑋 → ( ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 7 | 6 | ralimdv | ⊢ ( 𝑆 ⊆ 𝑋 → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 8 | 2 7 | mpan9 | ⊢ ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 9 | totbndmet | ⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) | |
| 10 | eqid | ⊢ ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) = ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) | |
| 11 | 10 | sstotbnd | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 12 | 9 11 | sylan | ⊢ ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 13 | 8 12 | mpbird | ⊢ ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) ) |